Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 15;328(Pt 3):763–768. doi: 10.1042/bj3280763

Effect of aging on the chaperone-like function of human alpha-crystallin assessed by three methods.

B K Derham 1, J J Harding 1
PMCID: PMC1218984  PMID: 9396718

Abstract

alpha-Crystallin can function as a molecular chaperone by preventing unwanted interactions. This paper presents the effects of aging and cataract on the chaperone-like properties of alpha-crystallin from soluble fractions from the cortex and nucleus of human lenses by using three assays: enzyme inactivation and two turbidity experiments. The three methods complemented each other. There was no decrease with age of chaperone-like function of cortical alpha-low and alpha-high crystallin. Nuclear alpha-low crystallin showed a decrease, whereas alpha-high crystallin showed no age-related change but its protective effect was diminished. Results from the nucleus of 40-year-old cataractous lenses seemed similar to those for clear lenses of equivalent age, whereas 80-year-old cataractous lenses showed decreased chaperone-like behaviour.

Full Text

The Full Text of this article is available as a PDF (299.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessems G. J., Keizer E., Wollensak J., Hoenders H. J. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Invest Ophthalmol Vis Sci. 1987 Jul;28(7):1157–1163. [PubMed] [Google Scholar]
  2. Beswick H. T., Harding J. J. Conformational changes induced in bovine lens alpha-crystallin by carbamylation. Relevance to cataract. Biochem J. 1984 Oct 1;223(1):221–227. doi: 10.1042/bj2230221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhat S. P., Nagineni C. N. alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun. 1989 Jan 16;158(1):319–325. doi: 10.1016/s0006-291x(89)80215-3. [DOI] [PubMed] [Google Scholar]
  4. Blakytny R., Harding J. J. Prevention of the inactivation of glutathione reductase by fructation using human alpha-crystallin. Biochem Soc Trans. 1995 Nov;23(4):610S–610S. doi: 10.1042/bst023610s. [DOI] [PubMed] [Google Scholar]
  5. Boyle D., Takemoto L. Characterization of the alpha-gamma and alpha-beta complex: evidence for an in vivo functional role of alpha-crystallin as a molecular chaperone. Exp Eye Res. 1994 Jan;58(1):9–15. doi: 10.1006/exer.1994.1190. [DOI] [PubMed] [Google Scholar]
  6. Cherian M., Abraham E. C. Decreased molecular chaperone property of alpha-crystallins due to posttranslational modifications. Biochem Biophys Res Commun. 1995 Mar 17;208(2):675–679. doi: 10.1006/bbrc.1995.1391. [DOI] [PubMed] [Google Scholar]
  7. Das K. P., Surewicz W. K. On the substrate specificity of alpha-crystallin as a molecular chaperone. Biochem J. 1995 Oct 15;311(Pt 2):367–370. doi: 10.1042/bj3110367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. 1983 Mar 31-Apr 6Nature. 302(5907):415–417. doi: 10.1038/302415a0. [DOI] [PubMed] [Google Scholar]
  9. Ellis R. J. The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci. 1993 Mar 29;339(1289):257–261. doi: 10.1098/rstb.1993.0023. [DOI] [PubMed] [Google Scholar]
  10. Harding J. J., Beswick H. T., Ajiboye R., Huby R., Blakytny R., Rixon K. C. Non-enzymic post-translational modification of proteins in aging. A review. Mech Ageing Dev. 1989 Oct;50(1):7–16. doi: 10.1016/0047-6374(89)90054-7. [DOI] [PubMed] [Google Scholar]
  11. Harding J. J. The nature and origin of the urea-insoluble protein of human lens. Exp Eye Res. 1972 Jan;13(1):33–40. doi: 10.1016/0014-4835(72)90122-4. [DOI] [PubMed] [Google Scholar]
  12. Heath M. M., Rixon K. C., Harding J. J. Glycation-induced inactivation of malate dehydrogenase protection by aspirin and a lens molecular chaperone, alpha-crystallin. Biochim Biophys Acta. 1996 Apr 12;1315(3):176–184. doi: 10.1016/0925-4439(95)00120-4. [DOI] [PubMed] [Google Scholar]
  13. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  14. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449–10453. doi: 10.1073/pnas.89.21.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horwitz J., Emmons T., Takemoto L. The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent. Curr Eye Res. 1992 Aug;11(8):817–822. doi: 10.3109/02713689209000754. [DOI] [PubMed] [Google Scholar]
  16. Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iwaki T., Kume-Iwaki A., Liem R. K., Goldman J. E. Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell. 1989 Apr 7;57(1):71–78. doi: 10.1016/0092-8674(89)90173-6. [DOI] [PubMed] [Google Scholar]
  18. Iwaki T., Tateishi J. Immunohistochemical demonstration of alphaB-crystallin in hamartomas of tuberous sclerosis. Am J Pathol. 1991 Dec;139(6):1303–1308. [PMC free article] [PubMed] [Google Scholar]
  19. Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
  20. Kato S., Hirano A., Umahara T., Llena J. F., Herz F., Ohama E. Ultrastructural and immunohistochemical studies on ballooned cortical neurons in Creutzfeldt-Jakob disease: expression of alpha B-crystallin, ubiquitin and stress-response protein 27. Acta Neuropathol. 1992;84(4):443–448. doi: 10.1007/BF00227673. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Li L. K., Spector A. Circular dichroism and optical rotatory dispersion of the aggregates of purified polypeptides of alpha-crystallin. Exp Eye Res. 1974 Jul;19(1):49–57. doi: 10.1016/0014-4835(74)90071-2. [DOI] [PubMed] [Google Scholar]
  23. Lowe J., Landon M., Pike I., Spendlove I., McDermott H., Mayer R. J. Dementia with beta-amyloid deposition: involvement of alpha B-crystallin supports two main diseases. Lancet. 1990 Aug 25;336(8713):515–516. doi: 10.1016/0140-6736(90)92075-s. [DOI] [PubMed] [Google Scholar]
  24. Lyons T. J., Silvestri G., Dunn J. A., Dyer D. G., Baynes J. W. Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes. 1991 Aug;40(8):1010–1015. doi: 10.2337/diab.40.8.1010. [DOI] [PubMed] [Google Scholar]
  25. Masters P. M., Bada J. L., Zigler J. S., Jr Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature. 1977 Jul 7;268(5615):71–73. doi: 10.1038/268071a0. [DOI] [PubMed] [Google Scholar]
  26. Merck K. B., Horwitz J., Kersten M., Overkamp P., Gaestel M., Bloemendal H., de Jong W. W. Comparison of the homologous carboxy-terminal domain and tail of alpha-crystallin and small heat shock protein. Mol Biol Rep. 1993 Oct;18(3):209–215. doi: 10.1007/BF01674432. [DOI] [PubMed] [Google Scholar]
  27. Pirie A. Color and solubility of the proteins of human cataracts. Invest Ophthalmol. 1968 Dec;7(6):634–650. [PubMed] [Google Scholar]
  28. Renkawek K., Voorter C. E., Bosman G. J., van Workum F. P., de Jong W. W. Expression of alpha B-crystallin in Alzheimer's disease. Acta Neuropathol. 1994;87(2):155–160. doi: 10.1007/BF00296185. [DOI] [PubMed] [Google Scholar]
  29. Slingsby C., Bateman O. A. Rapid separation of bovine beta-crystallin subunits beta B1, beta B2, beta B3, beta A3 and beta A4. Exp Eye Res. 1990 Jul;51(1):21–26. doi: 10.1016/0014-4835(90)90165-q. [DOI] [PubMed] [Google Scholar]
  30. Takemoto L., Emmons T., Horwitz J. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation. Biochem J. 1993 Sep 1;294(Pt 2):435–438. doi: 10.1042/bj2940435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takemoto L. Quantitation of C-terminal modification of alpha-A crystallin during aging of the human lens. Exp Eye Res. 1995 Jun;60(6):721–724. [PubMed] [Google Scholar]
  32. Testa M., Fiore C., Bocci N., Calabrò S. Effect of the oxidation of sulfhydryl groups on lens proteins. Exp Eye Res. 1968 Apr;7(2):276–290. doi: 10.1016/s0014-4835(68)80079-x. [DOI] [PubMed] [Google Scholar]
  33. Thorpe S. R., Baynes J. W. Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging. 1996 Aug;9(2):69–77. doi: 10.2165/00002512-199609020-00001. [DOI] [PubMed] [Google Scholar]
  34. Truscott R. J., Augusteyn R. C. Changes in human lens proteins during nuclear cataract formation. Exp Eye Res. 1977 Feb;24(2):159–170. doi: 10.1016/0014-4835(77)90256-1. [DOI] [PubMed] [Google Scholar]
  35. Vasan S., Zhang X., Zhang X., Kapurniotu A., Bernhagen J., Teichberg S., Basgen J., Wagle D., Shih D., Terlecky I. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature. 1996 Jul 18;382(6588):275–278. doi: 10.1038/382275a0. [DOI] [PubMed] [Google Scholar]
  36. Wistow G. J., Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem. 1988;57:479–504. doi: 10.1146/annurev.bi.57.070188.002403. [DOI] [PubMed] [Google Scholar]
  37. Yu N. T., DeNagel D. C., Pruett P. L., Kuck J. F., Jr Disulfide bond formation in the eye lens. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7965–7968. doi: 10.1073/pnas.82.23.7965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van Boekel M. A., Hoogakker S. E., Harding J. J., de Jong W. W. The influence of some post-translational modifications on the chaperone-like activity of alpha-crystallin. Ophthalmic Res. 1996;28 (Suppl 1):32–38. doi: 10.1159/000267940. [DOI] [PubMed] [Google Scholar]
  39. van Kleef F. S., Hoenders H. J. Population character and variety in subunit structure of high-molecular-weight proteins from the bovine eye lens. Eur J Biochem. 1973 Dec 17;40(2):549–554. doi: 10.1111/j.1432-1033.1973.tb03226.x. [DOI] [PubMed] [Google Scholar]
  40. van Noort J. M., van Sechel A. C., Bajramovic J. J., el Ouagmiri M., Polman C. H., Lassmann H., Ravid R. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature. 1995 Jun 29;375(6534):798–801. doi: 10.1038/375798a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES