Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 15;328(Pt 3):801–806. doi: 10.1042/bj3280801

Mechanism of the antimycin A-mediated enhancement of t-butylhydroperoxide-induced single-strand breakage in DNA.

A Guidarelli 1, E Clementi 1, L Brambilla 1, O Cantoni 1
PMCID: PMC1218989  PMID: 9396723

Abstract

Inhibitors of complex III increased the DNA strand scission induced by t-butylhydroperoxide (tB-OOH) and cumene hydroperoxide but did not affect DNA damage induced by H2O2. The hypothesis that these effects are selectively linked to inhibition of the electron transport from cytochrome b to cytochrome c1 is validated by the following observations: (1) two complex III inhibitors, antimycin A and 2-heptyl-4-hydroxyquinoline N-oxide, enhanced the tB-OOH-induced DNA cleavage over the same concentration range as that in which inhibition of oxygen consumption was observed; (2) the complex III inhibitor-mediated enhancement of tB-OOH-induced DNA damage was abolished by the complex I inhibitor rotenone or by glucose omission, and (3) the enhancing effects of antimycin A were not observed in respiration-deficient cells. The mechanism whereby the complex III inhibitors potentiate DNA cleavage promoted by tB-OOH was subsequently investigated with intact as well as permeabilized cells. H2O2, produced at the level of mitochondria via a Ca2+-dependent process, was found to account for the enhancing effects of antimycin A.

Full Text

The Full Text of this article is available as a PDF (286.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker M. A., He S. Q. Elaboration of cellular DNA breaks by hydroperoxides. Free Radic Biol Med. 1991;11(6):563–572. doi: 10.1016/0891-5849(91)90137-r. [DOI] [PubMed] [Google Scholar]
  2. Barr D. P., Mason R. P. Mechanism of radical production from the reaction of cytochrome c with organic hydroperoxides. An ESR spin trapping investigation. J Biol Chem. 1995 May 26;270(21):12709–12716. doi: 10.1074/jbc.270.21.12709. [DOI] [PubMed] [Google Scholar]
  3. Bellomo G., Martino A., Richelmi P., Moore G. A., Jewell S. A., Orrenius S. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria. Eur J Biochem. 1984 Apr 2;140(1):1–6. doi: 10.1111/j.1432-1033.1984.tb08058.x. [DOI] [PubMed] [Google Scholar]
  4. Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cadenas E., Boveris A. Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. Biochem J. 1980 Apr 15;188(1):31–37. doi: 10.1042/bj1880031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cantoni O., Murray D., Meyn R. E. Effect of 3-aminobenzamide on DNA strand-break rejoining and cytotoxicity in CHO cells treated with hydrogen peroxide. Biochim Biophys Acta. 1986 Jun 20;867(3):135–143. doi: 10.1016/0167-4781(86)90073-4. [DOI] [PubMed] [Google Scholar]
  7. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  8. Castilho R. F., Kowaltowski A. J., Meinicke A. R., Bechara E. J., Vercesi A. E. Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Free Radic Biol Med. 1995 Mar;18(3):479–486. doi: 10.1016/0891-5849(94)00166-h. [DOI] [PubMed] [Google Scholar]
  9. Cino M., Del Maestro R. F. Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch Biochem Biophys. 1989 Mar;269(2):623–638. doi: 10.1016/0003-9861(89)90148-3. [DOI] [PubMed] [Google Scholar]
  10. Coleman J. B., Gilfor D., Farber J. L. Dissociation of the accumulation of single-strand breaks in DNA from the killing of cultured hepatocytes by an oxidative stress. Mol Pharmacol. 1989 Jul;36(1):193–200. [PubMed] [Google Scholar]
  11. Fiskum G., Craig S. W., Decker G. L., Lehninger A. L. The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3430–3434. doi: 10.1073/pnas.77.6.3430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geiger P. G., Lin F., Girotti A. W. Selenoperoxidase-mediated cytoprotection against the damaging effects of tert-butyl hydroperoxide on leukemia cells. Free Radic Biol Med. 1993 Mar;14(3):251–266. doi: 10.1016/0891-5849(93)90022-m. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Guidarelli A., Brambilla L., Rota C., Tomasi A., Cattabeni F., Cantoni O. The respiratory-chain poison antimycin A promotes the formation of DNA single-strand breaks and reduces toxicity in U937 cells exposed to t-butylhydroperoxide. Biochem J. 1996 Jul 15;317(Pt 2):371–375. doi: 10.1042/bj3170371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guidarelli A., Cattabeni F., Cantoni O. Alternative mechanisms for hydroperoxide-induced DNA single strand breakage. Free Radic Res. 1997 Jun;26(6):537–547. doi: 10.3109/10715769709097825. [DOI] [PubMed] [Google Scholar]
  16. Guidarelli A., Sestili P., Cossarizza A., Franceschi C., Cattabeni F., Cantoni O. Evidence for dissimilar mechanisms of enhancement of inorganic and organic hydroperoxide cytotoxicity by L-histidine. J Pharmacol Exp Ther. 1995 Dec;275(3):1575–1582. [PubMed] [Google Scholar]
  17. Iannone A., Marconi A., Zambruno G., Giannetti A., Vannini V., Tomasi A. Free radical production during metabolism of organic hydroperoxides by normal human keratinocytes. J Invest Dermatol. 1993 Jul;101(1):59–63. doi: 10.1111/1523-1747.ep12359510. [DOI] [PubMed] [Google Scholar]
  18. Imberti R., Nieminen A. L., Herman B., Lemasters J. J. Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: protection by fructose, cyclosporin A and trifluoperazine. J Pharmacol Exp Ther. 1993 Apr;265(1):392–400. [PubMed] [Google Scholar]
  19. Konstantinov A. A., Peskin A. V., Popova EYu, Khomutov G. B., Ruuge E. K. Superoxide generation by the respiratory chain of tumor mitochondria. Biochim Biophys Acta. 1987 Oct 29;894(1):1–10. doi: 10.1016/0005-2728(87)90206-4. [DOI] [PubMed] [Google Scholar]
  20. Korytowski W., Bachowski G. J., Geiger P. G., Lin F., Zhao G., Girotti A. W. Selenoperoxidase-dependent glutathione cycle activity in peroxide-challenged leukemia cells. Biochim Biophys Acta. 1995 May 29;1267(1):31–40. doi: 10.1016/0167-4889(95)00058-z. [DOI] [PubMed] [Google Scholar]
  21. Latour I., Demoulin J. B., Buc-Calderon P. Oxidative DNA damage by t-butyl hydroperoxide causes DNA single strand breaks which is not linked to cell lysis. A mechanistic study in freshly isolated rat hepatocytes. FEBS Lett. 1995 Oct 16;373(3):299–302. doi: 10.1016/0014-5793(95)01065-m. [DOI] [PubMed] [Google Scholar]
  22. Livingston F. R., Lui E. M., Loeb G. A., Forman H. J. Sublethal oxidant stress induces a reversible increase in intracellular calcium dependent on NAD(P)H oxidation in rat alveolar macrophages. Arch Biochem Biophys. 1992 Nov 15;299(1):83–91. doi: 10.1016/0003-9861(92)90247-t. [DOI] [PubMed] [Google Scholar]
  23. Masaki N., Kyle M. E., Farber J. L. tert-butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Arch Biochem Biophys. 1989 Mar;269(2):390–399. doi: 10.1016/0003-9861(89)90122-7. [DOI] [PubMed] [Google Scholar]
  24. Masaki N., Kyle M. E., Serroni A., Farber J. L. Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide. Arch Biochem Biophys. 1989 May 1;270(2):672–680. doi: 10.1016/0003-9861(89)90550-x. [DOI] [PubMed] [Google Scholar]
  25. Nieminen A. L., Saylor A. K., Tesfai S. A., Herman B., Lemasters J. J. Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J. 1995 Apr 1;307(Pt 1):99–106. doi: 10.1042/bj3070099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Donnell V., Burkitt M. J. Mitochondrial metabolism of a hydroperoxide to free radicals in human endothelial cells: an electron spin resonance spin-trapping investigation. Biochem J. 1994 Dec 15;304(Pt 3):707–713. doi: 10.1042/bj3040707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Robinson J., Cooper J. M. Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Anal Biochem. 1970 Feb;33(2):390–399. doi: 10.1016/0003-2697(70)90310-6. [DOI] [PubMed] [Google Scholar]
  28. Sandström B. E. Induction and rejoining of DNA single-strand breaks in relation to cellular growth in human cells exposed to three hydroperoxides at 0 degrees C and 37 degrees C. Free Radic Res Commun. 1991;15(2):79–89. doi: 10.3109/10715769109049128. [DOI] [PubMed] [Google Scholar]
  29. Thomas C. E., Reed D. J. Effect of extracellular Ca++ omission on isolated hepatocytes. II. Loss of mitochondrial membrane potential and protection by inhibitors of uniport Ca++ transduction. J Pharmacol Exp Ther. 1988 May;245(2):501–507. [PubMed] [Google Scholar]
  30. Turrens J. F., Alexandre A., Lehninger A. L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985 Mar;237(2):408–414. doi: 10.1016/0003-9861(85)90293-0. [DOI] [PubMed] [Google Scholar]
  31. Valle V. G., Fagian M. M., Parentoni L. S., Meinicke A. R., Vercesi A. E. The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants. Arch Biochem Biophys. 1993 Nov 15;307(1):1–7. doi: 10.1006/abbi.1993.1551. [DOI] [PubMed] [Google Scholar]
  32. Van Ark G., Berden J. A. Binding of HQNO to beef-heart sub-mitochondrial particles. Biochim Biophys Acta. 1977 Jan 6;459(1):119–127. doi: 10.1016/0005-2728(77)90014-7. [DOI] [PubMed] [Google Scholar]
  33. Wu E. Y., Smith M. T., Bellomo G., Di Monte D. Relationships between the mitochondrial transmembrane potential, ATP concentration, and cytotoxicity in isolated rat hepatocytes. Arch Biochem Biophys. 1990 Nov 1;282(2):358–362. doi: 10.1016/0003-9861(90)90129-m. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES