Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 15;328(Pt 3):833–840. doi: 10.1042/bj3280833

Covalent complex of microperoxidase with a 21-residue synthetic peptide as a maquette for low-molecular-mass redox proteins.

R Ippoliti 1, A Picciau 1, R Santucci 1, G Antonini 1, M Brunori 1, G Ranghino 1
PMCID: PMC1218994  PMID: 9396728

Abstract

Here we report the structural and functional characterization of a covalent complex (MKP) obtained by cross-linking microperoxidase (Mp), the haem-undecapeptide obtained by the peptic digestion of cytochrome c, with a 21-residue synthetic peptide (P21) analogous to the S-peptide of the RNase A. The covalent complex has been prepared by introducing a disulphide bond between Cys-1 of P21 and Lys-13 of Mp, previously modified with a thiol-containing reagent. On formation of the complex (which is a monomer), the helical content of P21 increases significantly. The results obtained indicate that His-13 of P21 co-ordinates to the sixth co-ordination position of the haem iron, thus leading to the formation of a complex characterized by an equilibrium between an 'open' and a 'closed' structure, as confirmed by molecular dynamics simulations. Under acidic pH conditions, where His-13 of P21 is loosely bound to the haem iron ('open' conformation), MKP displays appreciable, quasi-reversible electrochemical activity; in contrast, at neutral pH ('closed' conformation) electrochemical behaviour is negligible, indicating that P21 interferes with the electron-transfer properties typical of Mp. On the whole, MKP is a suitable starting material for building a miniature haem system, with interesting potential for application to biosensor technology.

Full Text

The Full Text of this article is available as a PDF (567.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayasaka N., Kondo T., Goto T., Kido M. A., Nagata E., Tanaka T. Differences in the transport systems between cementocytes and osteocytes in rats using microperoxidase as a tracer. Arch Oral Biol. 1992;37(5):363–369. doi: 10.1016/0003-9969(92)90019-5. [DOI] [PubMed] [Google Scholar]
  2. Bierzynski A., Kim P. S., Baldwin R. L. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2470–2474. doi: 10.1073/pnas.79.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunori M., Santucci R., Campanella L., Tranchida G. Membrane-entrapped microperoxidase as a 'solid-state' promoter in the electrochemistry of soluble metalloproteins. Biochem J. 1989 Nov 15;264(1):301–304. doi: 10.1042/bj2640301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  6. HARBURY H. A., LOACH P. A. Oxidation-linked proton functions in heme octa- and undecapeptides from mammalian cytochrome c. J Biol Chem. 1960 Dec;235:3640–3645. [PubMed] [Google Scholar]
  7. Harbury H. A., Loach P. A. LINKED FUNCTIONS IN HEME SYSTEMS: OXIDATION-REDUCTION POTENTIALS AND ABSORPTION SPECTRA OF A HEME PEPTIDE OBTAINED UPON PEPTIC HYDROLYSIS OF CYTOCHROME C. Proc Natl Acad Sci U S A. 1959 Sep;45(9):1344–1359. doi: 10.1073/pnas.45.9.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kim P. S., Baldwin R. L. A helix stop signal in the isolated S-peptide of ribonuclease A. 1984 Jan 26-Feb 1Nature. 307(5949):329–334. doi: 10.1038/307329a0. [DOI] [PubMed] [Google Scholar]
  9. Kimura K., Peterson J., Wilson M., Cookson D. J., Williams R. J. A study of the electron transfer properties of the heme undecapeptide from cytochrome c by 1H nmr spectroscopy. J Inorg Biochem. 1981 Aug;15(1):11–25. doi: 10.1016/s0162-0134(00)80132-4. [DOI] [PubMed] [Google Scholar]
  10. Mitchinson C., Baldwin R. L. The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability. Proteins. 1986 Sep;1(1):23–33. doi: 10.1002/prot.340010106. [DOI] [PubMed] [Google Scholar]
  11. Moser C. C., Keske J. M., Warncke K., Farid R. S., Dutton P. L. Nature of biological electron transfer. Nature. 1992 Feb 27;355(6363):796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
  12. Santucci R., Faraoni A., Campanella L., Tranchida G., Brunori M. Use of 'solid-state' promoters in the electrochemistry of cytochrome c at a gold electrode. Biochem J. 1991 Feb 1;273(Pt 3):783–786. doi: 10.1042/bj2730783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Santucci R., Picciau A., Antonini G., Campanella L. A complex of microperoxidase with a synthetic peptide: structural and functional characterization. Biochim Biophys Acta. 1995 Jul 19;1250(2):183–188. doi: 10.1016/0167-4838(95)00030-x. [DOI] [PubMed] [Google Scholar]
  14. Shoemaker K. R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. Tests of the helix dipole model for stabilization of alpha-helices. Nature. 1987 Apr 9;326(6113):563–567. doi: 10.1038/326563a0. [DOI] [PubMed] [Google Scholar]
  15. Urry D. W. Model systems for interacting heme moieties. I. The heme undecapeptide of cytochrome c. J Am Chem Soc. 1967 Aug 2;89(16):4190–4196. doi: 10.1021/ja00992a601. [DOI] [PubMed] [Google Scholar]
  16. Wilson M. T., Ranson R. J., Masiakowski P., Czarnecka E., Brunori M. A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase). Eur J Biochem. 1977 Jul 1;77(1):193–199. doi: 10.1111/j.1432-1033.1977.tb11657.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES