Abstract
Here we report the structural and functional characterization of a covalent complex (MKP) obtained by cross-linking microperoxidase (Mp), the haem-undecapeptide obtained by the peptic digestion of cytochrome c, with a 21-residue synthetic peptide (P21) analogous to the S-peptide of the RNase A. The covalent complex has been prepared by introducing a disulphide bond between Cys-1 of P21 and Lys-13 of Mp, previously modified with a thiol-containing reagent. On formation of the complex (which is a monomer), the helical content of P21 increases significantly. The results obtained indicate that His-13 of P21 co-ordinates to the sixth co-ordination position of the haem iron, thus leading to the formation of a complex characterized by an equilibrium between an 'open' and a 'closed' structure, as confirmed by molecular dynamics simulations. Under acidic pH conditions, where His-13 of P21 is loosely bound to the haem iron ('open' conformation), MKP displays appreciable, quasi-reversible electrochemical activity; in contrast, at neutral pH ('closed' conformation) electrochemical behaviour is negligible, indicating that P21 interferes with the electron-transfer properties typical of Mp. On the whole, MKP is a suitable starting material for building a miniature haem system, with interesting potential for application to biosensor technology.
Full Text
The Full Text of this article is available as a PDF (567.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayasaka N., Kondo T., Goto T., Kido M. A., Nagata E., Tanaka T. Differences in the transport systems between cementocytes and osteocytes in rats using microperoxidase as a tracer. Arch Oral Biol. 1992;37(5):363–369. doi: 10.1016/0003-9969(92)90019-5. [DOI] [PubMed] [Google Scholar]
- Bierzynski A., Kim P. S., Baldwin R. L. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2470–2474. doi: 10.1073/pnas.79.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunori M., Santucci R., Campanella L., Tranchida G. Membrane-entrapped microperoxidase as a 'solid-state' promoter in the electrochemistry of soluble metalloproteins. Biochem J. 1989 Nov 15;264(1):301–304. doi: 10.1042/bj2640301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
- HARBURY H. A., LOACH P. A. Oxidation-linked proton functions in heme octa- and undecapeptides from mammalian cytochrome c. J Biol Chem. 1960 Dec;235:3640–3645. [PubMed] [Google Scholar]
- Harbury H. A., Loach P. A. LINKED FUNCTIONS IN HEME SYSTEMS: OXIDATION-REDUCTION POTENTIALS AND ABSORPTION SPECTRA OF A HEME PEPTIDE OBTAINED UPON PEPTIC HYDROLYSIS OF CYTOCHROME C. Proc Natl Acad Sci U S A. 1959 Sep;45(9):1344–1359. doi: 10.1073/pnas.45.9.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. A helix stop signal in the isolated S-peptide of ribonuclease A. 1984 Jan 26-Feb 1Nature. 307(5949):329–334. doi: 10.1038/307329a0. [DOI] [PubMed] [Google Scholar]
- Kimura K., Peterson J., Wilson M., Cookson D. J., Williams R. J. A study of the electron transfer properties of the heme undecapeptide from cytochrome c by 1H nmr spectroscopy. J Inorg Biochem. 1981 Aug;15(1):11–25. doi: 10.1016/s0162-0134(00)80132-4. [DOI] [PubMed] [Google Scholar]
- Mitchinson C., Baldwin R. L. The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability. Proteins. 1986 Sep;1(1):23–33. doi: 10.1002/prot.340010106. [DOI] [PubMed] [Google Scholar]
- Moser C. C., Keske J. M., Warncke K., Farid R. S., Dutton P. L. Nature of biological electron transfer. Nature. 1992 Feb 27;355(6363):796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
- Santucci R., Faraoni A., Campanella L., Tranchida G., Brunori M. Use of 'solid-state' promoters in the electrochemistry of cytochrome c at a gold electrode. Biochem J. 1991 Feb 1;273(Pt 3):783–786. doi: 10.1042/bj2730783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santucci R., Picciau A., Antonini G., Campanella L. A complex of microperoxidase with a synthetic peptide: structural and functional characterization. Biochim Biophys Acta. 1995 Jul 19;1250(2):183–188. doi: 10.1016/0167-4838(95)00030-x. [DOI] [PubMed] [Google Scholar]
- Shoemaker K. R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. Tests of the helix dipole model for stabilization of alpha-helices. Nature. 1987 Apr 9;326(6113):563–567. doi: 10.1038/326563a0. [DOI] [PubMed] [Google Scholar]
- Urry D. W. Model systems for interacting heme moieties. I. The heme undecapeptide of cytochrome c. J Am Chem Soc. 1967 Aug 2;89(16):4190–4196. doi: 10.1021/ja00992a601. [DOI] [PubMed] [Google Scholar]
- Wilson M. T., Ranson R. J., Masiakowski P., Czarnecka E., Brunori M. A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase). Eur J Biochem. 1977 Jul 1;77(1):193–199. doi: 10.1111/j.1432-1033.1977.tb11657.x. [DOI] [PubMed] [Google Scholar]