Abstract
The organ common-type (CT) isoenzyme of acylphosphatase is inactivated by Woodward's reagent K (WRK) (N-ethyl-5-phenylisoxazolium-3'-sulphonate) at pH6.0. The inactivation reaction follows apparent pseudo first-order kinetics. The dependence of the reciprocal of the pseudo first-order kinetic constant (kobs) on the reciprocal WRK concentration reveals saturation kinetics, suggesting that the WRK forms a reversible complex with the enzyme before causing inactivation. Competitive inhibitors, such as inorganic phosphate and ATP, protect the enzyme from WRK inactivation, suggesting that this reagent acts at or near to the enzyme active site. The reagent-enzyme adduct, which elicits a strong absorption band with lambdamax at 346 nm, was separated from unreacted enzyme by reverse phase HPLC and the modified protein was cleaved with endoproteinase Glu-C to produce fragments. The HPLC fractionation gave two reagent-labelled peptides (peak 1 and peak 2) that were analysed by ion-spray MS and sequenced. The former is VFFRKHTQAE (residues 20-29 of human CT acylphosphatase) and the latter IFGKVQGVFFRKHTQAE (residues 13-29). MS demonstrated that both peptides are WRK adducts. A fragment ion with m/z of 1171, which is present in the mass spectrum of peak 1, has been identified as a WRK adduct of the peptide fragment 20-26. The lambdamax at 346 nm of WRK adduct suggests that the modified residue is His-25. Five recombinant enzymes mutated in residues included in the 20-29 polypeptide stretch have been produced. Analysis of their reactivities with WRK demonstrates that His-25 is the molecular target of the reagent as its modification causes the inactivation of the enzyme. Since both His-25-->Gln and His-25-->Phe mutants maintain high catalytic activity, we suggest that the observed enzyme inactivation is caused by the reagent (covalently bound to His-25), which shields the active site.
Full Text
The Full Text of this article is available as a PDF (481.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berti A., Degl'Innocenti D., Stefani M., Liguri G., Ramponi G. Quantitative determination of acylphosphatase levels in horse tissues by enzyme-linked immunosorbent assay. Ital J Biochem. 1987 Mar-Apr;36(2):82–91. [PubMed] [Google Scholar]
- Berti A., Degl'Innocenti D., Stefani M., Ramponi G. Expression and turnover of acylphosphatase (muscular isoenzyme) in L6 myoblasts during myogenesis. Arch Biochem Biophys. 1992 Apr;294(1):261–264. doi: 10.1016/0003-9861(92)90166-t. [DOI] [PubMed] [Google Scholar]
- Brake A. J., Weber B. H. Evidence for an essential carboxyl group for yeast phosphoglycerate kinase. Reaction with Woodward's reagent K. J Biol Chem. 1974 Sep 10;249(17):5452–5457. [PubMed] [Google Scholar]
- Cappugi G., Manao G., Camici G., Ramponi G. The complete amino acid sequence of horse muscle acylphosphatase. J Biol Chem. 1980 Jul 25;255(14):6868–6874. [PubMed] [Google Scholar]
- Carrillo N., Arana J. L., Vallejos R. H. An essential carboxyl group at the nucleotide binding site of ferredoxin-NADP+ oxidoreductase. J Biol Chem. 1981 Jul 10;256(13):6823–6828. [PubMed] [Google Scholar]
- Chauthaiwale J., Rao M. Chemical modification of xylanase from alkalothermophilic Bacillus species: evidence for essential carboxyl group. Biochim Biophys Acta. 1994 Feb 16;1204(2):164–168. doi: 10.1016/0167-4838(94)90004-3. [DOI] [PubMed] [Google Scholar]
- Chiarugi P., Degl'Innocenti D., Raugei G., Fiaschi T., Ramponi G. Differential migration of acylphosphatase isoenzymes from cytoplasm to nucleus during apoptotic cell death. Biochem Biophys Res Commun. 1997 Feb 24;231(3):717–721. doi: 10.1006/bbrc.1997.6176. [DOI] [PubMed] [Google Scholar]
- Chiarugi P., Degl'Innocenti D., Taddei L., Raugei G., Berti A., Rigacci S., Ramponi G. Acylphosphatase is involved in differentiation of K562 cells. Cell Death Differ. 1997 May;4(4):334–340. doi: 10.1038/sj.cdd.4400230. [DOI] [PubMed] [Google Scholar]
- Chiarugi P., Raugei G., Fiaschi T., Taddei L., Camici G., Ramponi G. Characterization of a novel nucleolytic activity of acylphosphatases. Biochem Mol Biol Int. 1996 Sep;40(1):73–81. doi: 10.1080/15216549600201552. [DOI] [PubMed] [Google Scholar]
- Chiarugi P., Raugei G., Marzocchini R., Fiaschi T., Ciccarelli C., Berti A., Ramponi G. Differential modulation of expression of the two acylphosphatase isoenzymes by thyroid hormone. Biochem J. 1995 Oct 15;311(Pt 2):567–573. doi: 10.1042/bj3110567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
- Dolfi F., Carnero A., Cuadrado A., Ramponi G., Lacal J. C. Acylphosphatase synergizes with progesterone during maturation of Xenopus laevis oocytes. FEBS Lett. 1993 Aug 2;327(3):265–270. doi: 10.1016/0014-5793(93)81001-g. [DOI] [PubMed] [Google Scholar]
- Dolfi F., Carnero A., Ramponi G., Lacal J. C. Microinjection of acylphosphatase blocks Xenopus laevis oocytes maturation induced by ras-p21. FEBS Lett. 1993 Jul 12;326(1-3):167–170. doi: 10.1016/0014-5793(93)81784-w. [DOI] [PubMed] [Google Scholar]
- Dunn B. M., Anfinsen C. B. Kinetics of Woodward's Reagent K hydrolysis and reaction with staphylococcal nuclease. J Biol Chem. 1974 Jun 25;249(12):3717–3723. [PubMed] [Google Scholar]
- Fiaschi T., Raugei G., Marzocchini R., Chiarugi P., Cirri P., Ramponi G. Cloning and expression of the cDNA coding for the erythrocyte isoenzyme of human acylphosphatase. FEBS Lett. 1995 Jun 26;367(2):145–148. doi: 10.1016/0014-5793(95)00553-l. [DOI] [PubMed] [Google Scholar]
- Ghetti A., Bolognesi M., Cobianchi F., Morandi C. Modeling by homology of RNA binding domain in A1 hnRNP protein. FEBS Lett. 1990 Dec 17;277(1-2):272–276. doi: 10.1016/0014-5793(90)80863-e. [DOI] [PubMed] [Google Scholar]
- Hokin L. E., Sastry P. S., Galsworthy P. R., Yoda A. Evidence that a phosphorylated intermediate in a brain transport adenosine triphosphatase is an acyl phosphate. Proc Natl Acad Sci U S A. 1965 Jul;54(1):177–184. doi: 10.1073/pnas.54.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson A. R., Dekker E. E. Woodward's reagent K inactivation of Escherichia coli L-threonine dehydrogenase: increased absorbance at 340-350 nm is due to modification of cysteine and histidine residues, not aspartate or glutamate carboxyl groups. Protein Sci. 1996 Feb;5(2):382–390. doi: 10.1002/pro.5560050223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komissarov A. A., Romanova D. V., Debabov V. G. Complete inactivation of Escherichia coli uridine phosphorylase by modification of Asp5 with Woodward's reagent K. J Biol Chem. 1995 Apr 28;270(17):10050–10055. doi: 10.1074/jbc.270.17.10050. [DOI] [PubMed] [Google Scholar]
- Liguri G., Camici G., Manao G., Cappugi G., Nassi P., Modesti A., Ramponi G. A new acylphosphatase isoenzyme from human erythrocytes: purification, characterization, and primary structure. Biochemistry. 1986 Dec 2;25(24):8089–8094. doi: 10.1021/bi00372a044. [DOI] [PubMed] [Google Scholar]
- Lombardo D. Modification of the essential amino acids of human pancreatic carboxylic-ester hydrolase. Biochim Biophys Acta. 1982 Jan 4;700(1):67–74. doi: 10.1016/0167-4838(82)90293-x. [DOI] [PubMed] [Google Scholar]
- Maralihalli G. B., Bhagwat A. S. Modification of maize phosphoenolpyruvate carboxylase by Woodward's reagent K. J Protein Chem. 1993 Aug;12(4):451–457. doi: 10.1007/BF01025045. [DOI] [PubMed] [Google Scholar]
- Mizuno Y., Ohba Y., Fujita H., Kanesaka Y., Tamura T., Shiokawa H. Distribution and classification of acylphosphatase isozymes. Arch Biochem Biophys. 1990 May 1;278(2):437–443. doi: 10.1016/0003-9861(90)90282-4. [DOI] [PubMed] [Google Scholar]
- Nagai K., Oubridge C., Jessen T. H., Li J., Evans P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature. 1990 Dec 6;348(6301):515–520. doi: 10.1038/348515a0. [DOI] [PubMed] [Google Scholar]
- Nassi P., Nediani C., Liguri G., Taddei N., Ramponi G. Effects of acylphosphatase on the activity of erythrocyte membrane Ca2+ pump. J Biol Chem. 1991 Jun 15;266(17):10867–10871. [PubMed] [Google Scholar]
- Nediani C., Marchetti E., Nassi P., Liguri G., Ramponi G. Hydrolysis by acylphosphatase of erythrocyte membrane Na+, K(+)-ATPase phosphorylated intermediate. Biochem Int. 1991 Jul;24(5):959–968. [PubMed] [Google Scholar]
- Perego M., Hoch J. A. Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet. 1996 Mar;12(3):97–101. doi: 10.1016/0168-9525(96)81420-x. [DOI] [PubMed] [Google Scholar]
- Pétra P. H. Modification of carboxyl groups in bovine carboxypeptidase A. I. Inactivation of the enzyme by N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward's reagent K). Biochemistry. 1971 Aug 17;10(17):3163–3170. doi: 10.1021/bi00793a001. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinha U., Brewer J. M. A spectrophotometric method for quantitation of carboxyl group modification of proteins using Woodward's Reagent K. Anal Biochem. 1985 Dec;151(2):327–333. doi: 10.1016/0003-2697(85)90183-6. [DOI] [PubMed] [Google Scholar]
- Stefani M., Liguri G., Berti A., Nassi P., Ramponi G. Hydrolysis by horse muscle acylphosphatase of (Ca2+ + Mg2+)-ATPase phosphorylated intermediate. Arch Biochem Biophys. 1981 Apr 15;208(1):37–41. doi: 10.1016/0003-9861(81)90120-x. [DOI] [PubMed] [Google Scholar]
- Swanson R. V., Alex L. A., Simon M. I. Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci. 1994 Nov;19(11):485–490. doi: 10.1016/0968-0004(94)90135-x. [DOI] [PubMed] [Google Scholar]
- Taddei N., Stefani M., Vecchi M., Modesti A., Raugei G., Bucciantini M., Magherini F., Ramponi G. Arginine-23 is involved in the catalytic site of muscle acylphosphatase. Biochim Biophys Acta. 1994 Sep 21;1208(1):75–80. doi: 10.1016/0167-4838(94)90161-9. [DOI] [PubMed] [Google Scholar]
- Thunnissen M. M., Agango E. G., Taddei N., Liguri G., Cecchi C., Pieri A., Ramponi G., Nordlund P. Crystallisation and preliminary X-ray analysis of the 'common-type' acylphosphatase. FEBS Lett. 1995 May 15;364(3):243–244. doi: 10.1016/0014-5793(95)00363-e. [DOI] [PubMed] [Google Scholar]
- Thunnissen M. M., Taddei N., Liguri G., Ramponi G., Nordlund P. Crystal structure of common type acylphosphatase from bovine testis. Structure. 1997 Jan 15;5(1):69–79. doi: 10.1016/s0969-2126(97)00167-6. [DOI] [PubMed] [Google Scholar]
- Tomme P., van Beeumen J., Claeyssens M. Modification of catalytically important carboxy residues in endoglucanase D from Clostridium thermocellum. Biochem J. 1992 Jul 1;285(Pt 1):319–324. doi: 10.1042/bj2850319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valle E. M., Vallejos R. H. Modification of carboxyl groups at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys. 1984 Jun;231(2):263–270. doi: 10.1016/0003-9861(84)90387-4. [DOI] [PubMed] [Google Scholar]
- Vangrysperre W., Kersters-Hilderson H., Callens M., De Bruyne C. K. Reaction of Woodward's reagent K with D-xylose isomerases. Modification of an active site carboxylate residue. Biochem J. 1989 May 15;260(1):163–169. doi: 10.1042/bj2600163. [DOI] [PMC free article] [PubMed] [Google Scholar]