Abstract
P-glycoprotein (Pgp) is a membrane protein that transports chemotherapeutic drugs, causing multidrug resistance in human cancer cells. Pgp is a member of the ATP-binding cassette superfamily and functions as a transport ATPase. It has been suggested that the conformation of Pgp changes in the catalytic cycle. In this study, we tested this hypothesis by using limited proteolysis as a tool to detect different conformational states trapped by binding of nucleotide ligands and inhibitors. Pgp has high basal ATPase activity; that is, ATP hydrolysis by Pgp is not rigidly associated with drug transport. This activity provides a convenient method for studying the conformational change of Pgp induced by nucleotide ligands, in the absence of drug substrates which may generate complications due to their own binding. Inside-out membrane vesicles containing human Pgp were isolated from multidrug-resistant SKOV/VLB cells and treated with trypsin in the absence or presence of MgATP, Mg-adenosine 5'-[beta,gamma-imido]triphosphate (Mg-p[NH]ppA) and MgADP. Changes in the proteolysis profile of Pgp owing to binding of nucleotides were used to indicate the conformational changes in Pgp. We found that generation of tryptic fragments, including the loop linking transmembrane (TM) regions TM8 and TM9 of Pgp, were stimulated by the binding of Mg-p[NH]ppA, MgATP and MgADP, indicating that the Pgp conformation was changed by the binding of these nucleotides. The effects of nucleotides on Pgp conformation are directly associated with the binding and/or hydrolysis of these ligands. Four conformational states of Pgp were stabilized under different conditions with various ligands and inhibitors. We propose that cycling through these four states couples the Pgp-mediated MgATP hydrolysis to drug transport.
Full Text
The Full Text of this article is available as a PDF (331.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambudkar S. V., Lelong I. H., Zhang J., Cardarelli C. O., Gottesman M. M., Pastan I. Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8472–8476. doi: 10.1073/pnas.89.18.8472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellamy W. T. P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol. 1996;36:161–183. doi: 10.1146/annurev.pa.36.040196.001113. [DOI] [PubMed] [Google Scholar]
- Bender W. W., Garan H., Berg H. C. Proteins of the human erythrocyte membrane as modified by pronase. J Mol Biol. 1971 Jun 28;58(3):783–797. doi: 10.1016/0022-2836(71)90040-4. [DOI] [PubMed] [Google Scholar]
- Bibi E., Béjà O. Membrane topology of multidrug resistance protein expressed in Escherichia coli. N-terminal domain. J Biol Chem. 1994 Aug 5;269(31):19910–19915. [PubMed] [Google Scholar]
- Borst P., Schinkel A. H., Smit J. J., Wagenaar E., Van Deemter L., Smith A. J., Eijdems E. W., Baas F., Zaman G. J. Classical and novel forms of multidrug resistance and the physiological functions of P-glycoproteins in mammals. Pharmacol Ther. 1993 Nov;60(2):289–299. doi: 10.1016/0163-7258(93)90011-2. [DOI] [PubMed] [Google Scholar]
- Bosch I., Dunussi-Joannopoulos K., Wu R. L., Furlong S. T., Croop J. Phosphatidylcholine and phosphatidylethanolamine behave as substrates of the human MDR1 P-glycoprotein. Biochemistry. 1997 May 13;36(19):5685–5694. doi: 10.1021/bi962728r. [DOI] [PubMed] [Google Scholar]
- Béjà O., Bibi E. Multidrug resistance protein (Mdr)-alkaline phosphatase hybrids in Escherichia coli suggest a major revision in the topology of the C-terminal half of Mdr. J Biol Chem. 1995 May 26;270(21):12351–12354. doi: 10.1074/jbc.270.21.12351. [DOI] [PubMed] [Google Scholar]
- Chen C. J., Chin J. E., Ueda K., Clark D. P., Pastan I., Gottesman M. M., Roninson I. B. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986 Nov 7;47(3):381–389. doi: 10.1016/0092-8674(86)90595-7. [DOI] [PubMed] [Google Scholar]
- Childs S., Ling V. The MDR superfamily of genes and its biological implications. Important Adv Oncol. 1994:21–36. [PubMed] [Google Scholar]
- Doige C. A., Ames G. F. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol. 1993;47:291–319. doi: 10.1146/annurev.mi.47.100193.001451. [DOI] [PubMed] [Google Scholar]
- Doige C. A., Yu X., Sharom F. J. ATPase activity of partially purified P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta. 1992 Aug 24;1109(2):149–160. doi: 10.1016/0005-2736(92)90078-z. [DOI] [PubMed] [Google Scholar]
- Georges E., Bradley G., Gariepy J., Ling V. Detection of P-glycoprotein isoforms by gene-specific monoclonal antibodies. Proc Natl Acad Sci U S A. 1990 Jan;87(1):152–156. doi: 10.1073/pnas.87.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georges E., Zhang J. T., Ling V. Modulation of ATP and drug binding by monoclonal antibodies against P-glycoprotein. J Cell Physiol. 1991 Sep;148(3):479–484. doi: 10.1002/jcp.1041480321. [DOI] [PubMed] [Google Scholar]
- Gerlach J. H., Endicott J. A., Juranka P. F., Henderson G., Sarangi F., Deuchars K. L., Ling V. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature. 1986 Dec 4;324(6096):485–489. doi: 10.1038/324485a0. [DOI] [PubMed] [Google Scholar]
- Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
- Gros P., Croop J., Housman D. Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell. 1986 Nov 7;47(3):371–380. doi: 10.1016/0092-8674(86)90594-5. [DOI] [PubMed] [Google Scholar]
- Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
- Hsu C. M., Rosen B. P. Characterization of the catalytic subunit of an anion pump. J Biol Chem. 1989 Oct 15;264(29):17349–17354. [PubMed] [Google Scholar]
- Hyde S. C., Emsley P., Hartshorn M. J., Mimmack M. M., Gileadi U., Pearce S. R., Gallagher M. P., Gill D. R., Hubbard R. E., Higgins C. F. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990 Jul 26;346(6282):362–365. doi: 10.1038/346362a0. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L. Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim Biophys Acta. 1975 Sep 2;401(3):399–415. doi: 10.1016/0005-2736(75)90239-4. [DOI] [PubMed] [Google Scholar]
- Kast C., Canfield V., Levenson R., Gros P. Membrane topology of P-glycoprotein as determined by epitope insertion: transmembrane organization of the N-terminal domain of mdr3. Biochemistry. 1995 Apr 4;34(13):4402–4411. doi: 10.1021/bi00013a032. [DOI] [PubMed] [Google Scholar]
- Liu R., Sharom F. J. Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains. Biochemistry. 1996 Sep 10;35(36):11865–11873. doi: 10.1021/bi960823u. [DOI] [PubMed] [Google Scholar]
- Loo T. W., Clarke D. M. Membrane topology of a cysteine-less mutant of human P-glycoprotein. J Biol Chem. 1995 Jan 13;270(2):843–848. doi: 10.1074/jbc.270.2.843. [DOI] [PubMed] [Google Scholar]
- Or E., David P., Shainskaya A., Tal D. M., Karlish S. J. Effects of competitive sodium-like antagonists on Na,K-ATPase suggest that cation occlusion from the cytoplasmic surface occurs in two steps. J Biol Chem. 1993 Aug 15;268(23):16929–16937. [PubMed] [Google Scholar]
- Rao R., Cunningham D., Cross R. L., Senior A. E. Pyridoxal 5'-diphospho-5'-adenosine binds at a single site on isolated alpha-subunit from Escherichia coli F1-ATPase and specifically reacts with lysine 201. J Biol Chem. 1988 Apr 25;263(12):5640–5645. [PubMed] [Google Scholar]
- Rao U. S. Mutation of glycine 185 to valine alters the ATPase function of the human P-glycoprotein expressed in Sf9 cells. J Biol Chem. 1995 Mar 24;270(12):6686–6690. [PubMed] [Google Scholar]
- Riordan J. R., Ling V. Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J Biol Chem. 1979 Dec 25;254(24):12701–12705. [PubMed] [Google Scholar]
- Schneider E., Wilken S., Schmid R. Nucleotide-induced conformational changes of MalK, a bacterial ATP binding cassette transporter protein. J Biol Chem. 1994 Aug 12;269(32):20456–20461. [PubMed] [Google Scholar]
- Senda M., Kanazawa H., Tsuchiya T., Futai M. Conformational change of the alpha subunit of Escherichia coli F1 ATPase: ATP changes the trypsin sensitivity of the subunit. Arch Biochem Biophys. 1983 Feb 1;220(2):398–404. doi: 10.1016/0003-9861(83)90429-0. [DOI] [PubMed] [Google Scholar]
- Senior A. E., al-Shawi M. K., Urbatsch I. L. The catalytic cycle of P-glycoprotein. FEBS Lett. 1995 Dec 27;377(3):285–289. doi: 10.1016/0014-5793(95)01345-8. [DOI] [PubMed] [Google Scholar]
- Shapiro A. B., Duthie M., Childs S., Okubo T., Ling V. Characterization and epitope mapping of several new anti-P-glycoprotein monoclonal antibodies. Int J Cancer. 1996 Jul 17;67(2):256–263. doi: 10.1002/(SICI)1097-0215(19960717)67:2<256::AID-IJC17>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- Shapiro A. B., Ling V. ATPase activity of purified and reconstituted P-glycoprotein from Chinese hamster ovary cells. J Biol Chem. 1994 Feb 4;269(5):3745–3754. [PubMed] [Google Scholar]
- Sharom F. J. Characterization and functional reconstitution of the multidrug transporter. J Bioenerg Biomembr. 1995 Feb;27(1):15–22. doi: 10.1007/BF02110326. [DOI] [PubMed] [Google Scholar]
- Skach W. R., Calayag M. C., Lingappa V. R. Evidence for an alternate model of human P-glycoprotein structure and biogenesis. J Biol Chem. 1993 Apr 5;268(10):6903–6908. [PubMed] [Google Scholar]
- Slatin S. L., Qiu X. Q., Jakes K. S., Finkelstein A. Identification of a translocated protein segment in a voltage-dependent channel. Nature. 1994 Sep 8;371(6493):158–161. doi: 10.1038/371158a0. [DOI] [PubMed] [Google Scholar]
- Smit J. J., Schinkel A. H., Oude Elferink R. P., Groen A. K., Wagenaar E., van Deemter L., Mol C. A., Ottenhoff R., van der Lugt N. M., van Roon M. A. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993 Nov 5;75(3):451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
- Sonveaux N., Shapiro A. B., Goormaghtigh E., Ling V., Ruysschaert J. M. Secondary and tertiary structure changes of reconstituted P-glycoprotein. A Fourier transform attenuated total reflection infrared spectroscopy analysis. J Biol Chem. 1996 Oct 4;271(40):24617–24624. doi: 10.1074/jbc.271.40.24617. [DOI] [PubMed] [Google Scholar]
- Urbatsch I. L., Sankaran B., Weber J., Senior A. E. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J Biol Chem. 1995 Aug 18;270(33):19383–19390. doi: 10.1074/jbc.270.33.19383. [DOI] [PubMed] [Google Scholar]
- Zhang J. T., Duthie M., Ling V. Membrane topology of the N-terminal half of the hamster P-glycoprotein molecule. J Biol Chem. 1993 Jul 15;268(20):15101–15110. [PubMed] [Google Scholar]
- Zhang J. T., Ling V. Study of membrane orientation and glycosylated extracellular loops of mouse P-glycoprotein by in vitro translation. J Biol Chem. 1991 Sep 25;266(27):18224–18232. [PubMed] [Google Scholar]
- Zhang M., Wang G., Shapiro A., Zhang J. T. Topological folding and proteolysis profile of P-glycoprotein in membranes of multidrug-resistant cells: implications for the drug-transport mechanism. Biochemistry. 1996 Jul 30;35(30):9728–9736. doi: 10.1021/bi960400s. [DOI] [PubMed] [Google Scholar]
- al-Shawi M. K., Senior A. E. Characterization of the adenosine triphosphatase activity of Chinese hamster P-glycoprotein. J Biol Chem. 1993 Feb 25;268(6):4197–4206. [PubMed] [Google Scholar]
- al-Shawi M. K., Urbatsch I. L., Senior A. E. Covalent inhibitors of P-glycoprotein ATPase activity. J Biol Chem. 1994 Mar 25;269(12):8986–8992. [PubMed] [Google Scholar]
- van Helvoort A., Smith A. J., Sprong H., Fritzsche I., Schinkel A. H., Borst P., van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996 Nov 1;87(3):507–517. doi: 10.1016/s0092-8674(00)81370-7. [DOI] [PubMed] [Google Scholar]
