Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 15;328(Pt 3):913–922. doi: 10.1042/bj3280913

Effects of adrenaline on triacylglycerol synthesis and turnover in ventricular myocytes from adult rats.

E M Swanton 1, E D Saggerson 1
PMCID: PMC1219004  PMID: 9396738

Abstract

Ca2+-tolerant myocytes were isolated with endogenous triacylglycerol (TAG) stores prelabelled with [3H]palmitate and subsequently incubated for a 1h chase period with [14C]palmitate, 2% albumin and 5mM glucose. Measurements were then made of [14C]palmitate conversion into TAG and phospholipids, of loss of [3H]TAG, of glycerol release and of change in the total TAG content. Rates of de novo synthesis of TAG were calculated by a balance method. With 0. 5mM palmitate present, 5 microM adrenaline increased de novo synthesis of TAG by 81% and incorporation of [14C]palmitate into phospholipids by 59%. Significant increases in these processes with adrenaline were also seen with 0.08, 0.14 and 0.26 mM palmitate. The beta-agonist isoprenaline had little effect on de novo synthesis of TAG and had no effect on [14C]palmitate conversion into phospholipids. The alpha1-agonist phenylephrine mimicked adrenaline in increasing [14C]palmitate conversion into phospholipids but had no effect on de novo synthesis of TAG. Adrenaline did not significantly alter the myocyte glycerol 3-phosphate content but caused a persistent 40% increase in the activity of the form of glycerolphosphate acyltransferase found predominantly in the sarcoplasmic reticulum. With 0.5 mM palmitate present, the value [14C]TAG formed -decrease in [3H]TAG consistently exceeded the enzymically measured change in cell TAG content. From this it was suggested that the specific radioactivity of [3H]TAG pool(s) mobilized during the chase period was lower than that of the overall cell TAG. In the basal state, complete mobilization of TAG measured as glycerol release was low, but cycling of TAG to diacylglycerol or monoacylglycerol and back to TAG appeared to be high. With adrenaline present, glycerol release was increased 5-6-fold but recycling of lower acylglycerols to TAG was abolished. Glycerol release was inhibited by increasing extracellular palmitate from 0.08 to 0.5 mM. Adrenaline partially over-rode this effect.

Full Text

The Full Text of this article is available as a PDF (348.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baht H. S., Saggerson E. D. Comparison of triacylglycerol synthesis in rat brown and white adipocytes. Effects of hypothyroidism and streptozotocin-diabetes on enzyme activities and metabolic fluxes. Biochem J. 1988 Mar 1;250(2):325–333. doi: 10.1042/bj2500325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhat B. G., Bardes E. S., Coleman R. A. Solubilization and partial purification of neonatally expressed rat hepatic microsomal monoacylglycerol acyltransferase. Arch Biochem Biophys. 1993 Feb 1;300(2):663–669. doi: 10.1006/abbi.1993.1092. [DOI] [PubMed] [Google Scholar]
  3. Bogoyevitch M. A., Sugden P. H. The role of protein kinases in adaptational growth of the heart. Int J Biochem Cell Biol. 1996 Jan;28(1):1–12. doi: 10.1016/1357-2725(95)00142-5. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Carling D., Zammit V. A., Hardie D. G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 1987 Nov 2;223(2):217–222. doi: 10.1016/0014-5793(87)80292-2. [DOI] [PubMed] [Google Scholar]
  6. Cheng C. H., Saggerson E. D. Rapid antagonistic actions of noradrealine and insulin on rat adipocyte phosphatidate phosphohydrolase activity. FEBS Lett. 1978 Sep 1;93(1):120–124. doi: 10.1016/0014-5793(78)80818-7. [DOI] [PubMed] [Google Scholar]
  7. Coleman R. A., Haynes E. B. Hepatic monoacylglycerol acyltransferase. Characterization of an activity associated with the suckling period in rats. J Biol Chem. 1984 Jul 25;259(14):8934–8938. [PubMed] [Google Scholar]
  8. Coleman R. A., Haynes E. B. Monoacylglycerol acyltransferase. Evidence that the activities from rat intestine and suckling liver are tissue-specific isoenzymes. J Biol Chem. 1986 Jan 5;261(1):224–228. [PubMed] [Google Scholar]
  9. Coleman R., Bell R. M. Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J Biol Chem. 1976 Aug 10;251(15):4537–4543. [PubMed] [Google Scholar]
  10. Crass M. F., 3rd Exogenous substrate effects on endogenous lipid metabolism in the working rat heart. Biochim Biophys Acta. 1972 Sep 7;280(1):71–81. doi: 10.1016/0005-2760(72)90213-5. [DOI] [PubMed] [Google Scholar]
  11. Crass M. F., 3rd, McCaskill E. S., Shipp J. C., Murthy V. K. Metabolism of endogenous lipids in cardia muscle: effect of pressure development. Am J Physiol. 1971 Feb;220(2):428–435. doi: 10.1152/ajplegacy.1971.220.2.428. [DOI] [PubMed] [Google Scholar]
  12. Crass M. F., 3rd Regulation of triglyceride metabolism in the isotopically prelabeled perfused heart. Fed Proc. 1977 Jun;36(7):1995–1999. [PubMed] [Google Scholar]
  13. Crass M. F., 3rd, Shipp J. C., Pieper G. M. Effects of catecholamines on myocardial endogenous substrates and contractility. Am J Physiol. 1975 Feb;228(2):618–627. doi: 10.1152/ajplegacy.1975.228.2.618. [DOI] [PubMed] [Google Scholar]
  14. DAVIDSON F. M., LONG C. The structure of the naturally occurring phosphoglycerides. 4. Action of cabbage-leaf phospholipase D on ovolecithin and related substances. Biochem J. 1958 Jul;69(3):458–466. doi: 10.1042/bj0690458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davies S. P., Carling D., Hardie D. G. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989 Dec 8;186(1-2):123–128. doi: 10.1111/j.1432-1033.1989.tb15185.x. [DOI] [PubMed] [Google Scholar]
  16. Denton R. M., Randle P. J. Measurement of flow of carbon atoms from glucose and glycogen glucose to glyceride glycerol and glycerol in rat heart and epididymal adipose tissue. Effects of insulin, adrenaline and alloxan-diabetes. Biochem J. 1967 Aug;104(2):423–434. doi: 10.1042/bj1040423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. EVANS W. H., MUELLER P. S. EFFECTS OF PALMITATE ON THE METABOLISM OF LEUKOCYTES FROM GUINEA PIG EXUDATE. J Lipid Res. 1963 Jan;4:39–45. [PubMed] [Google Scholar]
  18. Farese R. V., Standaert M. L., Yamada K., Huang L. C., Zhang C., Cooper D. R., Wang Z., Yang Y., Suzuki S., Toyota T. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11040–11044. doi: 10.1073/pnas.91.23.11040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fredrikson G., Strålfors P., Nilsson N. O., Belfrage P. Hormone-sensitive lipase of rat adipose tissue. Purification and some properties. J Biol Chem. 1981 Jun 25;256(12):6311–6320. [PubMed] [Google Scholar]
  20. Fuller S. J., Gaitanaki C. J., Sugden P. H. Effects of catecholamines on protein synthesis in cardiac myocytes and perfused hearts isolated from adult rats. Stimulation of translation is mediated through the alpha 1-adrenoceptor. Biochem J. 1990 Mar 15;266(3):727–736. doi: 10.1042/bj2660727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. GARLAND P. B., RANDLE P. J. A rapid enzymatic assay for glycerol. Nature. 1962 Dec 8;196:987–988. doi: 10.1038/196987a0. [DOI] [PubMed] [Google Scholar]
  22. Goldberg D. I., Khoo J. C. Activation of myocardial neutral triglyceride lipase and neutral cholesterol esterase by cAMP-dependent protein kinase. J Biol Chem. 1985 May 25;260(10):5879–5882. [PubMed] [Google Scholar]
  23. Haagsman H. P., de Haas C. G., Geelen M. J., van Golde L. M. Regulation of triacylglycerol synthesis in the liver. Modulation of diacylglycerol acyltransferase activity in vitro. J Biol Chem. 1982 Sep 25;257(18):10593–10598. [PubMed] [Google Scholar]
  24. Haagsman H. P., de Haas C. G., Geelen M. J., van Golde L. M. Regulation of triacylglycerol synthesis in the liver: a decrease in diacylglycerol acyltransferase activity after treatment of isolated rat hepatocytes with glucagon. Biochim Biophys Acta. 1981 Apr 23;664(1):74–81. doi: 10.1016/0005-2760(81)90029-1. [DOI] [PubMed] [Google Scholar]
  25. Heathers G. P., Al-Muhtaseb N., Brunt R. V. The effect of adrenergic agents on the activities of glycerol 3-phosphate acyltransferase and triglyceride lipase in the isolated perfused rat heart. J Mol Cell Cardiol. 1985 Aug;17(8):785–796. doi: 10.1016/s0022-2828(85)80040-7. [DOI] [PubMed] [Google Scholar]
  26. Heathers G. P., Brunt R. V. The effect of coronary artery occlusion and reperfusion on the activities of triglyceride lipase and glycerol 3-phosphate acyl transferase in the isolated perfused rat heart. J Mol Cell Cardiol. 1985 Sep;17(9):907–916. doi: 10.1016/s0022-2828(85)80104-8. [DOI] [PubMed] [Google Scholar]
  27. Holm C., Belfrage P., Fredrikson G. Immunological evidence for the presence of hormone-sensitive lipase in rat tissues other than adipose tissue. Biochem Biophys Res Commun. 1987 Oct 14;148(1):99–105. doi: 10.1016/0006-291x(87)91081-3. [DOI] [PubMed] [Google Scholar]
  28. Holm C., Kirchgessner T. G., Svenson K. L., Fredrikson G., Nilsson S., Miller C. G., Shively J. E., Heinzmann C., Sparkes R. S., Mohandas T. Hormone-sensitive lipase: sequence, expression, and chromosomal localization to 19 cent-q13.3. Science. 1988 Sep 16;241(4872):1503–1506. doi: 10.1126/science.3420405. [DOI] [PubMed] [Google Scholar]
  29. Hron W. T., Jesmok G. J., Lombardo Y. B., Menahan L. A., Lech J. J. Calcium dependency of hormone stimulated lipolysis in the perfused rat heart. J Mol Cell Cardiol. 1977 Sep;9(9):733–748. doi: 10.1016/s0022-2828(77)80019-9. [DOI] [PubMed] [Google Scholar]
  30. Hülsmann W. C., Stam H., Jansen H. Localization and function of myocardial lipolysis. Basic Res Cardiol. 1984 May-Jun;79(3):268–273. doi: 10.1007/BF01908026. [DOI] [PubMed] [Google Scholar]
  31. Jamal Z., Martin A., Gomez-Muñoz A., Brindley D. N. Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J Biol Chem. 1991 Feb 15;266(5):2988–2996. [PubMed] [Google Scholar]
  32. Jesmok G. J., Calvert D. N., Lech J. J. The effect of inotropic agents on glycerol release and protein kinase activity ratios in the isolated perfused rat heart. J Pharmacol Exp Ther. 1977 Jan;200(1):187–194. [PubMed] [Google Scholar]
  33. Jodalen H., Lie R., Rotevatn S. Effect of isoproterenol on lipid accumulation in myocardial cells. Res Exp Med (Berl) 1982;181(3):239–244. doi: 10.1007/BF01851196. [DOI] [PubMed] [Google Scholar]
  34. Jodalen H., Ytrehus K., Moen P., Hokland B., Mjøs O. D. Oxfenicine-induced accumulation of lipid in the rat myocardium. J Mol Cell Cardiol. 1988 Mar;20(3):277–282. doi: 10.1016/s0022-2828(88)80060-9. [DOI] [PubMed] [Google Scholar]
  35. Karwatowska-Kryńska E., Beresewicz A. Effect of locally released catecholamines on lipolysis and injury of the hypoxic isolated rabbit heart. J Mol Cell Cardiol. 1983 Aug;15(8):523–536. doi: 10.1016/0022-2828(83)90328-0. [DOI] [PubMed] [Google Scholar]
  36. Kraemer F. B., Patel S., Saedi M. S., Sztalryd C. Detection of hormone-sensitive lipase in various tissues. I. Expression of an HSL/bacterial fusion protein and generation of anti-HSL antibodies. J Lipid Res. 1993 Apr;34(4):663–671. [PubMed] [Google Scholar]
  37. Kreisberg R. A. Effect of epinephrine on myocardial triglyceride and free fatty acid utilization. Am J Physiol. 1966 Feb;210(2):385–389. doi: 10.1152/ajplegacy.1966.210.2.385. [DOI] [PubMed] [Google Scholar]
  38. Kryski A., Jr, Kenno K. A., Severson D. L. Stimulation of lipolysis in rat heart myocytes by isoproterenol. Am J Physiol. 1985 Feb;248(2 Pt 2):H208–H216. doi: 10.1152/ajpheart.1985.248.2.H208. [DOI] [PubMed] [Google Scholar]
  39. Larsen T. S., Severson D. L. Influence of exogenous fatty acids and ketone bodies on rates of lipolysis in isolated ventricular myocytes from normal and diabetic rats. Can J Physiol Pharmacol. 1990 Sep;68(9):1177–1182. doi: 10.1139/y90-176. [DOI] [PubMed] [Google Scholar]
  40. Lopaschuk G. D., Gamble J. The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart. Can J Physiol Pharmacol. 1994 Oct;72(10):1101–1109. doi: 10.1139/y94-156. [DOI] [PubMed] [Google Scholar]
  41. Masters T. N., Glaviano V. V. The effects of norepinephrine and propranolol on myocardial subcellular distribution of triglycerides and free fatty acids. J Pharmacol Exp Ther. 1972 Aug;182(2):246–255. [PubMed] [Google Scholar]
  42. Mazière C., Mazière J. C., Mora L., Auclair M., Polonovski J. Cyclic AMP increases incorporation of exogenous fatty acids into triacylglycerols in hamster fibroblasts. Lipids. 1986 Aug;21(8):525–528. doi: 10.1007/BF02535641. [DOI] [PubMed] [Google Scholar]
  43. Olson R. E., Hoeschen R. J. Utilization of endogenous lipid by the isolated perfused rat heart. Biochem J. 1967 Jun;103(3):796–801. doi: 10.1042/bj1030796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Palmer W. K., Caruso R. A., Oscai L. B. Cyclic AMP activation of a triglyceride lipase in broken cell preparations of rat heart. Arch Biochem Biophys. 1986 Sep;249(2):255–262. doi: 10.1016/0003-9861(86)90001-9. [DOI] [PubMed] [Google Scholar]
  45. Patton S., Zulak I. M., Trams E. G. Fatty acid metabolism via triglyceride in the salmon heart. J Mol Cell Cardiol. 1975 Nov;7(11):857–865. doi: 10.1016/0022-2828(75)90136-4. [DOI] [PubMed] [Google Scholar]
  46. Paulson D. J., Crass M. F., 3rd Endogenous triacylglycerol metabolism in diabetic heart. Am J Physiol. 1982 Jun;242(6):H1084–H1094. doi: 10.1152/ajpheart.1982.242.6.H1084. [DOI] [PubMed] [Google Scholar]
  47. Ramírez I., Kryski A. J., Ben-Zeev O., Schotz M. C., Severson D. L. Characterization of triacylglycerol hydrolase activities in isolated myocardial cells from rat heart. Biochem J. 1985 Nov 15;232(1):229–236. doi: 10.1042/bj2320229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rider M. H., Saggerson E. D. Regulation by noradrenaline of the mitochondrial and microsomal forms of glycerol phosphate acyltransferase in rat adipocytes. Biochem J. 1983 Jul 15;214(1):235–246. doi: 10.1042/bj2140235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Riemersma R. A. Raised plasma non-esterified fatty acids (NEFA) during ischaemia: implications for arrhythmias. Basic Res Cardiol. 1987;82 (Suppl 1):177–186. doi: 10.1007/978-3-662-08390-1_22. [DOI] [PubMed] [Google Scholar]
  50. Rodriguez M. A., Dias C., Lau T. E. Reversible ATP-dependent inactivation of adipose diacylglycerol acyltransferase. Lipids. 1992 Aug;27(8):577–581. doi: 10.1007/BF02536113. [DOI] [PubMed] [Google Scholar]
  51. Saddik M., Lopaschuk G. D. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem. 1991 May 5;266(13):8162–8170. [PubMed] [Google Scholar]
  52. Saddik M., Lopaschuk G. D. Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem. 1992 Feb 25;267(6):3825–3831. [PubMed] [Google Scholar]
  53. Saddik M., Lopaschuk G. D. Triacylglycerol turnover in isolated working hearts of acutely diabetic rats. Can J Physiol Pharmacol. 1994 Oct;72(10):1110–1119. doi: 10.1139/y94-157. [DOI] [PubMed] [Google Scholar]
  54. Saggerson E. D., Carpenter C. A., Cheng C. H., Sooranna S. R. Subcellular distribution and some properties of N-ethylmaleimide-sensitive and-insensitive forms of glycerol phosphate acyltransferase in rat adipocytes. Biochem J. 1980 Jul 15;190(1):183–189. doi: 10.1042/bj1900183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Saggerson E. D. Lipogenesis in rat and guinea-pig isolated epididymal fat-cells. Biochem J. 1974 May;140(2):211–224. doi: 10.1042/bj1400211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Scheuer J., Olson R. E. Metabolism of exogenous triglyceride by the isolated perfused rat heart. Am J Physiol. 1967 Feb;212(2):301–307. doi: 10.1152/ajplegacy.1967.212.2.301. [DOI] [PubMed] [Google Scholar]
  57. Schoonderwoerd K., van der Kraaij T., Hülsmann W. C., Stam H. Hormones and triacylglycerol metabolism under normoxic and ischemic conditions. 1989 Jun 27-Jul 24Mol Cell Biochem. 88(1-2):129–137. doi: 10.1007/BF00223434. [DOI] [PubMed] [Google Scholar]
  58. Scow R. O., Blanchette-Mackie E. J. Endothelium, the dynamic interface in cardiac lipid transport. Mol Cell Biochem. 1992 Oct 21;116(1-2):181–191. doi: 10.1007/BF01270586. [DOI] [PubMed] [Google Scholar]
  59. Severson D. L., Hurley B. Regulation of rat heart triacylglycerol ester hydrolases by free fatty acids, fatty acyl CoA and fatty acyl carnitine. J Mol Cell Cardiol. 1982 Aug;14(8):467–474. doi: 10.1016/0022-2828(82)90153-5. [DOI] [PubMed] [Google Scholar]
  60. Small C. A., Garton A. J., Yeaman S. J. The presence and role of hormone-sensitive lipase in heart muscle. Biochem J. 1989 Feb 15;258(1):67–72. doi: 10.1042/bj2580067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Stam H., Broekhoven-Schokker S., Hülsmann W. C. Studies on the involvement of lipolytic enzymes in endogenous lipolysis of the isolated rat heart. Biochim Biophys Acta. 1986 Jan 3;875(1):87–96. doi: 10.1016/0005-2760(86)90014-7. [DOI] [PubMed] [Google Scholar]
  62. Stam H., Schoonderwoerd K., Hülsmann W. C. Synthesis, storage and degradation of myocardial triglycerides. Basic Res Cardiol. 1987;82 (Suppl 1):19–28. doi: 10.1007/978-3-662-08390-1_3. [DOI] [PubMed] [Google Scholar]
  63. Swanton E. M., Saggerson E. D. Glycerolipid metabolizing enzymes in rat ventricle and in cardiac myocytes. Biochim Biophys Acta. 1997 May 17;1346(1):93–102. doi: 10.1016/s0005-2760(97)00024-6. [DOI] [PubMed] [Google Scholar]
  64. Takenaka F., Takeo S. Effects of isoproterenol on myocardial lipid metabolism in rat hearts perfused with and without exogenous substrates. J Mol Cell Cardiol. 1976 Dec;8(12):925–940. doi: 10.1016/0022-2828(76)90075-4. [DOI] [PubMed] [Google Scholar]
  65. Tamboli A., Vander Maten M., O'Looney P., Vahouny G. V. Metabolism of fatty acid, glycerol and a monoglyceride analogue by rat cardiac myocytes and perfused hearts. Lipids. 1983 Nov;18(11):808–813. doi: 10.1007/BF02534640. [DOI] [PubMed] [Google Scholar]
  66. Taylor S. J., Saggerson E. D. Adipose-tissue Mg2+-dependent phosphatidate phosphohydrolase. Control of activity and subcellular distribution in vitro and in vivo. Biochem J. 1986 Oct 15;239(2):275–284. doi: 10.1042/bj2390275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Trach V., Buschmans-Denkel E., Schaper W. Relation between lipolysis and glycolysis during ischemia in the isolated rat heart. Basic Res Cardiol. 1986 Sep-Oct;81(5):454–464. doi: 10.1007/BF01907751. [DOI] [PubMed] [Google Scholar]
  68. Tsujita T., Miyazaki T., Tabei R., Okuda H. Coenzyme A-independent monoacylglycerol acyltransferase from rat intestinal mucosa. J Biol Chem. 1996 Jan 26;271(4):2156–2161. doi: 10.1074/jbc.271.4.2156. [DOI] [PubMed] [Google Scholar]
  69. Verhoeven A. J., Woods A., Brennan C. H., Hawley S. A., Hardie D. G., Scott J., Beri R. K., Carling D. The AMP-activated protein kinase gene is highly expressed in rat skeletal muscle. Alternative splicing and tissue distribution of the mRNA. Eur J Biochem. 1995 Mar 1;228(2):236–243. [PubMed] [Google Scholar]
  70. Vik-Mo H., Mjøs O. D. Influence of free fatty acids on myocardial oxygen consumption and ischemic injury. Am J Cardiol. 1981 Aug;48(2):361–365. doi: 10.1016/0002-9149(81)90621-4. [DOI] [PubMed] [Google Scholar]
  71. Vila M. C., Farese R. V. Insulin rapidly increases glycerol-3-phosphate-acyltransferase activity in rat adipocytes. Arch Biochem Biophys. 1991 Feb 1;284(2):366–368. doi: 10.1016/0003-9861(91)90309-7. [DOI] [PubMed] [Google Scholar]
  72. Vork M. M., Glatz J. F., Surtel D. A., Knubben H. J., Van der Vusse G. J. A sandwich enzyme linked immuno-sorbent assay for the determination of rat heart fatty acid-binding protein using the streptavidin-biotin system. Application to tissue and effluent samples from normoxic rat heart perfusion. Biochim Biophys Acta. 1991 Oct 31;1075(3):199–205. doi: 10.1016/0304-4165(91)90267-k. [DOI] [PubMed] [Google Scholar]
  73. WIELAND O., SUYTER M. Glycerokinase; Isolierung und Eigenschaften des Enzyms. Biochem Z. 1957;329(4):320–331. [PubMed] [Google Scholar]
  74. Walsh M., Durocher V., Rodriguez A. Reversible ATP-dependent inactivation of glycerolphosphate acyltransferase from rat adipose tissue. Biochem Cell Biol. 1989 Jan;67(1):48–52. doi: 10.1139/o89-007. [DOI] [PubMed] [Google Scholar]
  75. Yeaman S. J., Smith G. M., Jepson C. A., Wood S. L., Emmison N. The multifunctional role of hormone-sensitive lipase in lipid metabolism. Adv Enzyme Regul. 1994;34:355–370. doi: 10.1016/0065-2571(94)90022-1. [DOI] [PubMed] [Google Scholar]
  76. de Groot M. J., Willemsen P. H., Coumans W. A., van Bilsen M., van der Vusse G. J. Lactate-induced stimulation of myocardial triacylglycerol turnover. Biochim Biophys Acta. 1989 Nov 6;1006(1):111–115. doi: 10.1016/0005-2760(89)90330-5. [DOI] [PubMed] [Google Scholar]
  77. de Groot M. J., de Jong Y. F., Coumans W. A., van der Vusse G. J. The hydrolysis of glycerol-3-phosphate into glycerol in cardiac tissue: possible consequences for the validity of glycerol release as a measure of lipolysis. Pflugers Arch. 1994 May;427(1-2):96–101. doi: 10.1007/BF00585947. [DOI] [PubMed] [Google Scholar]
  78. van Bilsen M., van der Vusse G. J., Willemsen P. H., Coumans W. A., Roemen T. H., Reneman R. S. Lipid alterations in isolated, working rat hearts during ischemia and reperfusion: its relation to myocardial damage. Circ Res. 1989 Feb;64(2):304–314. doi: 10.1161/01.res.64.2.304. [DOI] [PubMed] [Google Scholar]
  79. van der Vusse G. J., Glatz J. F., Stam H. C., Reneman R. S. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992 Oct;72(4):881–940. doi: 10.1152/physrev.1992.72.4.881. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES