Abstract
The complex of the type-1 plasminogen activator inhibitor (PAI-1) and its target proteinases, the urokinase and tissue-type plasminogen activators (uPA and tPA), but not the free components, bind with high affinity to the endocytosis receptors alpha2-macroglobulin receptor/low-density lipoprotein receptor-related protein (alpha2MR/LRP) and very-low-density lipoprotein receptor (VLDLR). To characterize the molecular interaction between the complexes and the receptors, alanine codons were introduced into the human PAI-1 cDNA to replace the four basic residues, Arg-78, Lys-82, Arg-120 and Lys-124, as double mutations. The purified recombinant mutant proteins, rPAI-1/R78A-K124A and rPAI-1/K82A-R120A, produced by the yeast Pichia pastoris, were indistinghuisable from wild-type recombinant and natural human PAI-1 with respect to inhibitory activity against uPA, stability of SDS-resistant complexes with uPA, and vitronectin binding. Radiolabelled mutant uPA.PAI-1 complexes bound with a 10- to 20-fold, and 3- to 7-fold reduced affinity to purified alpha2MR/LRP and VLDLR respectively. alpha2MR/LRP-mediated endocytosis of the mutant complexes by COS-1 cells was reduced to 48 and 38% of the level of endocytosis of wild-type PAI-1. Binding of the mutant complexes to the uPA receptor was not affected. These findings suggest that the binding mode of the uPA.PAI-1 complex to both alpha2MR/LRP and VLDLR is similar. The four residues are surface exposed in the region defined by alpha-helix D and beta-strand 1A in the serine protease inhibitor (serpin) structure. Our study represents the first identification of residues in a surface region implicated in molecular recognition of protease.serpin complexes by endocytosis receptors of the low-density lipoprotein receptor family.
Full Text
The Full Text of this article is available as a PDF (353.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aertgeerts K., De Bondt H. L., De Ranter C. J., Declerck P. J. Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nat Struct Biol. 1995 Oct;2(10):891–897. doi: 10.1038/nsb1095-891. [DOI] [PubMed] [Google Scholar]
- Aertgeerts K., De Bondt H. L., De Ranter C., Declerck P. J. A model of the reactive form of plasminogen activator inhibitor-1. J Struct Biol. 1994 Nov-Dec;113(3):239–245. doi: 10.1006/jsbi.1994.1058. [DOI] [PubMed] [Google Scholar]
- Andreasen P. A., Georg B., Lund L. R., Riccio A., Stacey S. N. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrinol. 1990 Jan 2;68(1):1–19. doi: 10.1016/0303-7207(90)90164-4. [DOI] [PubMed] [Google Scholar]
- Andreasen P. A., Kjøller L., Christensen L., Duffy M. J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997 Jul 3;72(1):1–22. doi: 10.1002/(sici)1097-0215(19970703)72:1<1::aid-ijc1>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Andreasen P. A., Riccio A., Welinder K. G., Douglas R., Sartorio R., Nielsen L. S., Oppenheimer C., Blasi F., Danø K. Plasminogen activator inhibitor type-1: reactive center and amino-terminal heterogeneity determined by protein and cDNA sequencing. FEBS Lett. 1986 Dec 15;209(2):213–218. doi: 10.1016/0014-5793(86)81113-9. [DOI] [PubMed] [Google Scholar]
- Andreasen P. A., Sottrup-Jensen L., Kjøller L., Nykjaer A., Moestrup S. K., Petersen C. M., Gliemann J. Receptor-mediated endocytosis of plasminogen activators and activator/inhibitor complexes. FEBS Lett. 1994 Feb 7;338(3):239–245. doi: 10.1016/0014-5793(94)80276-9. [DOI] [PubMed] [Google Scholar]
- Carrell R. W., Stein P. E. The biostructural pathology of the serpins: critical function of sheet opening mechanism. Biol Chem Hoppe Seyler. 1996 Jan;377(1):1–17. doi: 10.1515/bchm3.1996.377.1.1. [DOI] [PubMed] [Google Scholar]
- Conese M., Blasi F. Urokinase/urokinase receptor system: internalization/degradation of urokinase-serpin complexes: mechanism and regulation. Biol Chem Hoppe Seyler. 1995 Mar;376(3):143–155. [PubMed] [Google Scholar]
- Conese M., Nykjaer A., Petersen C. M., Cremona O., Pardi R., Andreasen P. A., Gliemann J., Christensen E. I., Blasi F. alpha-2 Macroglobulin receptor/Ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor. J Cell Biol. 1995 Dec;131(6 Pt 1):1609–1622. doi: 10.1083/jcb.131.6.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conese M., Olson D., Blasi F. Protease nexin-1-urokinase complexes are internalized and degraded through a mechanism that requires both urokinase receptor and alpha 2-macroglobulin receptor. J Biol Chem. 1994 Jul 8;269(27):17886–17892. [PubMed] [Google Scholar]
- Daly N. L., Scanlon M. J., Djordjevic J. T., Kroon P. A., Smith R. Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6334–6338. doi: 10.1073/pnas.92.14.6334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
- Deng G., Curriden S. A., Wang S., Rosenberg S., Loskutoff D. J. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release? J Cell Biol. 1996 Sep;134(6):1563–1571. doi: 10.1083/jcb.134.6.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egelund R., Schousboe S. L., Sottrup-Jensen L., Rodenburg K. W., Andreasen P. A. Type-1 plasminogen-activator inhibitor -- conformational differences between latent, active, reactive-centre-cleaved and plasminogen-activator-complexed forms, as probed by proteolytic susceptibility. Eur J Biochem. 1997 Sep 15;248(3):775–785. doi: 10.1111/j.1432-1033.1997.t01-1-00775.x. [DOI] [PubMed] [Google Scholar]
- Ehrlich H. J., Gebbink R. K., Keijer J., Pannekoek H. Elucidation of structural requirements on plasminogen activator inhibitor 1 for binding to heparin. J Biol Chem. 1992 Jun 5;267(16):11606–11611. [PubMed] [Google Scholar]
- Ginsburg D., Zeheb R., Yang A. Y., Rafferty U. M., Andreasen P. A., Nielsen L., Dano K., Lebo R. V., Gelehrter T. D. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin Invest. 1986 Dec;78(6):1673–1680. doi: 10.1172/JCI112761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gliemann J., Nykjaer A., Petersen C. M., Jørgensen K. E., Nielsen M., Andreasen P. A., Christensen E. I., Lookene A., Olivecrona G., Moestrup S. K. The multiligand alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP). Binding and endocytosis of fluid phase and membrane-associated ligands. Ann N Y Acad Sci. 1994 Sep 10;737:20–38. doi: 10.1111/j.1749-6632.1994.tb44299.x. [DOI] [PubMed] [Google Scholar]
- Heegaard C. W., Simonsen A. C., Oka K., Kjøller L., Christensen A., Madsen B., Ellgaard L., Chan L., Andreasen P. A. Very low density lipoprotein receptor binds and mediates endocytosis of urokinase-type plasminogen activator-type-1 plasminogen activator inhibitor complex. J Biol Chem. 1995 Sep 1;270(35):20855–20861. doi: 10.1074/jbc.270.35.20855. [DOI] [PubMed] [Google Scholar]
- Huber R., Carrell R. W. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry. 1989 Nov 14;28(23):8951–8966. doi: 10.1021/bi00449a001. [DOI] [PubMed] [Google Scholar]
- Kasza A., Petersen H. H., Heegaard C. W., Oka K., Christensen A., Dubin A., Chan L., Andreasen P. A. Specificity of serine proteinase/serpin complex binding to very-low-density lipoprotein receptor and alpha2-macroglobulin receptor/low-density-lipoprotein-receptor-related protein. Eur J Biochem. 1997 Sep 1;248(2):270–281. doi: 10.1111/j.1432-1033.1997.00270.x. [DOI] [PubMed] [Google Scholar]
- Keijer J., Linders M., Wegman J. J., Ehrlich H. J., Mertens K., Pannekoek H. On the target specificity of plasminogen activator inhibitor 1: the role of heparin, vitronectin, and the reactive site. Blood. 1991 Sep 1;78(5):1254–1261. [PubMed] [Google Scholar]
- Kjøller L., Kanse S. M., Kirkegaard T., Rodenburg K. W., Rønne E., Goodman S. L., Preissner K. T., Ossowski L., Andreasen P. A. Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation. Exp Cell Res. 1997 May 1;232(2):420–429. doi: 10.1006/excr.1997.3540. [DOI] [PubMed] [Google Scholar]
- Kjøller L., Simonsen A. C., Ellgaard L., Andreasen P. A. Differential regulation of urokinase-type-1 inhibitor complex endocytosis by phorbol esters in different cell lines is associated with differential regulation of alpha 2-macroglobulin receptor and urokinase receptor expression. Mol Cell Endocrinol. 1995 Apr 1;109(2):209–217. doi: 10.1016/0303-7207(95)03504-z. [DOI] [PubMed] [Google Scholar]
- Kost C., Stüber W., Ehrlich H. J., Pannekoek H., Preissner K. T. Mapping of binding sites for heparin, plasminogen activator inhibitor-1, and plasminogen to vitronectin's heparin-binding region reveals a novel vitronectin-dependent feedback mechanism for the control of plasmin formation. J Biol Chem. 1992 Jun 15;267(17):12098–12105. [PubMed] [Google Scholar]
- Kounnas M. Z., Church F. C., Argraves W. S., Strickland D. K. Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, and alpha 1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J Biol Chem. 1996 Mar 15;271(11):6523–6529. doi: 10.1074/jbc.271.11.6523. [DOI] [PubMed] [Google Scholar]
- Krieger M., Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem. 1994;63:601–637. doi: 10.1146/annurev.bi.63.070194.003125. [DOI] [PubMed] [Google Scholar]
- Lawrence D. A., Berkenpas M. B., Palaniappan S., Ginsburg D. Localization of vitronectin binding domain in plasminogen activator inhibitor-1. J Biol Chem. 1994 May 27;269(21):15223–15228. [PubMed] [Google Scholar]
- Lawrence D. A., Ginsburg D., Day D. E., Berkenpas M. B., Verhamme I. M., Kvassman J. O., Shore J. D. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem. 1995 Oct 27;270(43):25309–25312. doi: 10.1074/jbc.270.43.25309. [DOI] [PubMed] [Google Scholar]
- Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988 Apr 29;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
- Mikhailenko I., Krylov D., Argraves K. M., Roberts D. D., Liau G., Strickland D. K. Cellular internalization and degradation of thrombospondin-1 is mediated by the amino-terminal heparin binding domain (HBD). High affinity interaction of dimeric HBD with the low density lipoprotein receptor-related protein. J Biol Chem. 1997 Mar 7;272(10):6784–6791. doi: 10.1074/jbc.272.10.6784. [DOI] [PubMed] [Google Scholar]
- Moestrup S. K. The alpha 2-macroglobulin receptor and epithelial glycoprotein-330: two giant receptors mediating endocytosis of multiple ligands. Biochim Biophys Acta. 1994 Jun 29;1197(2):197–213. doi: 10.1016/0304-4157(94)90005-1. [DOI] [PubMed] [Google Scholar]
- Mottonen J., Strand A., Symersky J., Sweet R. M., Danley D. E., Geoghegan K. F., Gerard R. D., Goldsmith E. J. Structural basis of latency in plasminogen activator inhibitor-1. Nature. 1992 Jan 16;355(6357):270–273. doi: 10.1038/355270a0. [DOI] [PubMed] [Google Scholar]
- Munch M., Heegaard C. W., Andreasen P. A. Interconversions between active, inert and substrate forms of denatured/refolded type-1 plasminogen activator inhibitor. Biochim Biophys Acta. 1993 Sep 3;1202(1):29–37. doi: 10.1016/0167-4838(93)90059-z. [DOI] [PubMed] [Google Scholar]
- Munch M., Heegaard C., Jensen P. H., Andreasen P. A. Type-1 inhibitor of plasminogen activators. Distinction between latent, activated and reactive centre-cleaved forms with thermal stability and monoclonal antibodies. FEBS Lett. 1991 Dec 16;295(1-3):102–106. doi: 10.1016/0014-5793(91)81395-o. [DOI] [PubMed] [Google Scholar]
- Nielsen K. L., Holtet T. L., Etzerodt M., Moestrup S. K., Gliemann J., Sottrup-Jensen L., Thogersen H. C. Identification of residues in alpha-macroglobulins important for binding to the alpha2-macroglobulin receptor/Low density lipoprotein receptor-related protein. J Biol Chem. 1996 May 31;271(22):12909–12912. doi: 10.1074/jbc.271.22.12909. [DOI] [PubMed] [Google Scholar]
- Nielsen L. S., Andreasen P. A., Grøndahl-Hansen J., Huang J. Y., Kristensen P., Danø K. Monoclonal antibodies to human 54,000 molecular weight plasminogen activator inhibitor from fibrosarcoma cells--inhibitor neutralization and one-step affinity purification. Thromb Haemost. 1986 Apr 30;55(2):206–212. [PubMed] [Google Scholar]
- Nielsen L. S., Grøndahl-Hansen J., Andreasen P. A., Skriver L., Zeuthen J., Danø K. Enzyme-linked immunosorbent assay for human urokinase-type plasminogen activator and its proenzyme using a combination of monoclonal and polyclonal antibodies. J Immunoassay. 1986;7(3):209–228. doi: 10.1080/01971528608060467. [DOI] [PubMed] [Google Scholar]
- Nielsen M. S., Brejning J., García R., Zhang H., Hayden M. R., Vilaró S., Gliemann J. Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans. J Biol Chem. 1997 Feb 28;272(9):5821–5827. doi: 10.1074/jbc.272.9.5821. [DOI] [PubMed] [Google Scholar]
- Nykjaer A., Conese M., Christensen E. I., Olson D., Cremona O., Gliemann J., Blasi F. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J. 1997 May 15;16(10):2610–2620. doi: 10.1093/emboj/16.10.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nykjaer A., Kjøller L., Cohen R. L., Lawrence D. A., Garni-Wagner B. A., Todd R. F., 3rd, van Zonneveld A. J., Gliemann J., Andreasen P. A. Regions involved in binding of urokinase-type-1 inhibitor complex and pro-urokinase to the endocytic alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. Evidence that the urokinase receptor protects pro-urokinase against binding to the endocytic receptor. J Biol Chem. 1994 Oct 14;269(41):25668–25676. [PubMed] [Google Scholar]
- Nykjaer A., Petersen C. M., Møller B., Jensen P. H., Moestrup S. K., Holtet T. L., Etzerodt M., Thøgersen H. C., Munch M., Andreasen P. A. Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem. 1992 Jul 25;267(21):14543–14546. [PubMed] [Google Scholar]
- Olson D., Pöllänen J., Høyer-Hansen G., Rønne E., Sakaguchi K., Wun T. C., Appella E., Danø K., Blasi F. Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem. 1992 May 5;267(13):9129–9133. [PubMed] [Google Scholar]
- Padmanabhan J., Sane D. C. Localization of a vitronectin binding region of plasminogen activator inhibitor-1. Thromb Haemost. 1995 May;73(5):829–834. [PubMed] [Google Scholar]
- Rodenburg K. W., Várallyay E., Svendsen I., Svensson B. Arg-27, Arg-127 and Arg-155 in the beta-trefoil protein barley alpha-amylase/subtilisin inhibitor are interface residues in the complex with barley alpha-amylase 2. Biochem J. 1995 Aug 1;309(Pt 3):969–976. doi: 10.1042/bj3090969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shubeita H. E., Cottey T. L., Franke A. E., Gerard R. D. Mutational and immunochemical analysis of plasminogen activator inhibitor 1. J Biol Chem. 1990 Oct 25;265(30):18379–18385. [PubMed] [Google Scholar]
- Simonsen A. C., Heegaard C. W., Rasmussen L. K., Ellgaard L., Kjøller L., Christensen A., Etzerodt M., Andreasen P. A. Very low density lipoprotein receptor from mammary gland and mammary epithelial cell lines binds and mediates endocytosis of M(r) 40,000 receptor associated protein. FEBS Lett. 1994 Nov 14;354(3):279–283. doi: 10.1016/0014-5793(94)01138-9. [DOI] [PubMed] [Google Scholar]
- Stefansson S., Lawrence D. A., Argraves W. S. Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1 and 2. J Biol Chem. 1996 Apr 5;271(14):8215–8220. doi: 10.1074/jbc.271.14.8215. [DOI] [PubMed] [Google Scholar]
- Stein P. E., Carrell R. W. What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol. 1995 Feb;2(2):96–113. doi: 10.1038/nsb0295-96. [DOI] [PubMed] [Google Scholar]
- Stein P., Chothia C. Serpin tertiary structure transformation. J Mol Biol. 1991 Sep 20;221(2):615–621. doi: 10.1016/0022-2836(91)80076-7. [DOI] [PubMed] [Google Scholar]
- Strickland D. K., Kounnas M. Z., Argraves W. S. LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J. 1995 Jul;9(10):890–898. doi: 10.1096/fasebj.9.10.7615159. [DOI] [PubMed] [Google Scholar]
- Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
- Wilczynska M., Fa M., Ohlsson P. I., Ny T. The inhibition mechanism of serpins. Evidence that the mobile reactive center loop is cleaved in the native protease-inhibitor complex. J Biol Chem. 1995 Dec 15;270(50):29652–29655. doi: 10.1074/jbc.270.50.29652. [DOI] [PubMed] [Google Scholar]
- van Meijer M., Gebbink R. K., Preissner K. T., Pannekoek H. Determination of the vitronectin binding site on plasminogen activator inhibitor 1 (PAI-1). FEBS Lett. 1994 Oct 3;352(3):342–346. doi: 10.1016/0014-5793(94)00990-2. [DOI] [PubMed] [Google Scholar]