Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jan 1;329(Pt 1):131–136. doi: 10.1042/bj3290131

Cross-talk between transcriptional regulation by thyroid hormone and myogenin: new aspects of the Ca2+-dependent expression of the fast-type sarcoplasmic reticulum Ca2+-ATPase.

M H Thelen 1, W S Simonides 1, A Muller 1, C van Hardeveld 1
PMCID: PMC1219023  PMID: 9405285

Abstract

We have previously demonstrated an interaction between the major determinants of skeletal muscle phenotype by showing that continuous contractile activity represses the thyroid hormone (3,3', 5-tri-iodothyronine; T3)-dependent transcriptional activity of fast-type sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase (SERCA1), a characteristic of the fast phenotype. Both the free cytosolic Ca2+ concentration ([Ca2+]i) and the myogenic determination factors MyoD and myogenin have been implicated as mediators of the effect of contractile activity on skeletal muscle phenotype. Using L6 cells we have shown that an increase in the steady-state [Ca2+]i above the resting level of 120 nM indeed can mimic the effect of contractile activity on T3-dependent SERCA1 expression. We now show that the repressing effect of increased [Ca2+]i on T3-dependent SERCA1 expression in L6 cells is exerted at a pre-translational level and is accompanied by increased myogenin mRNA expression. Myogenin overexpression in these cells revealed that increased expression of myogenin alone strongly decreases the T3-dependent stimulation of SERCA1 promoter activity. These results suggest a pathway for the regulation of skeletal muscle phenotype in which [Ca2+]i mediates the effect of contractile activity by regulating the expression of myogenin, which in turn interferes with transcriptional regulation by T3.

Full Text

The Full Text of this article is available as a PDF (263.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun T., Bober E., Buschhausen-Denker G., Kohtz S., Grzeschik K. H., Arnold H. H., Kotz S. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J. 1989 Dec 1;8(12):3617–3625. doi: 10.1002/j.1460-2075.1989.tb08535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brent G. A., Larsen P. R., Harney J. W., Koenig R. J., Moore D. D. Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected beta type thyroid hormone receptor. J Biol Chem. 1989 Jan 5;264(1):178–182. [PubMed] [Google Scholar]
  3. Brent G. A., Moore D. D., Larsen P. R. Thyroid hormone regulation of gene expression. Annu Rev Physiol. 1991;53:17–35. doi: 10.1146/annurev.ph.53.030191.000313. [DOI] [PubMed] [Google Scholar]
  4. Briggs F. N., Lee K. F., Feher J. J., Wechsler A. S., Ohlendieck K., Campbell K. Ca-ATPase isozyme expression in sarcoplasmic reticulum is altered by chronic stimulation of skeletal muscle. FEBS Lett. 1990 Jan 1;259(2):269–272. doi: 10.1016/0014-5793(90)80025-e. [DOI] [PubMed] [Google Scholar]
  5. Caiozzo V. J., Herrick R. E., Baldwin K. M. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms. Am J Physiol. 1992 Jul;263(1 Pt 1):C86–C94. doi: 10.1152/ajpcell.1992.263.1.C86. [DOI] [PubMed] [Google Scholar]
  6. Chahine K. G., Walke W., Goldman D. A 102 base pair sequence of the nicotinic acetylcholine receptor delta-subunit gene confers regulation by muscle electrical activity. Development. 1992 May;115(1):213–219. doi: 10.1242/dev.115.1.213. [DOI] [PubMed] [Google Scholar]
  7. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen J. D., Evans R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995 Oct 5;377(6548):454–457. doi: 10.1038/377454a0. [DOI] [PubMed] [Google Scholar]
  9. Davis R. L., Cheng P. F., Lassar A. B., Weintraub H. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell. 1990 Mar 9;60(5):733–746. doi: 10.1016/0092-8674(90)90088-v. [DOI] [PubMed] [Google Scholar]
  10. DeGroot L. J., Nakai A., Sakurai A., Macchia E. The molecular basis of thyroid hormone action. J Endocrinol Invest. 1989 Dec;12(11):843–861. doi: 10.1007/BF03350080. [DOI] [PubMed] [Google Scholar]
  11. Downes M., Griggs R., Atkins A., Olson E. N., Muscat G. E. Identification of a thyroid hormone response element in the mouse myogenin gene: characterization of the thyroid hormone and retinoid X receptor heterodimeric binding site. Cell Growth Differ. 1993 Nov;4(11):901–909. [PubMed] [Google Scholar]
  12. Dutton E. K., Simon A. M., Burden S. J. Electrical activity-dependent regulation of the acetylcholine receptor delta-subunit gene, MyoD, and myogenin in primary myotubes. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2040–2044. doi: 10.1073/pnas.90.5.2040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edmondson D. G., Olson E. N. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 1989 May;3(5):628–640. doi: 10.1101/gad.3.5.628. [DOI] [PubMed] [Google Scholar]
  14. Edmondson D. G., Olson E. N. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem. 1993 Jan 15;268(2):755–758. [PubMed] [Google Scholar]
  15. Eftimie R., Brenner H. R., Buonanno A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1349–1353. doi: 10.1073/pnas.88.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Florini J. R., Ewton D. Z., Roof S. L. Insulin-like growth factor-I stimulates terminal myogenic differentiation by induction of myogenin gene expression. Mol Endocrinol. 1991 May;5(5):718–724. doi: 10.1210/mend-5-5-718. [DOI] [PubMed] [Google Scholar]
  17. Goblet C., Whalen R. G. Modifications of gene expression in myotonic murine skeletal muscle are associated with abnormal expression of myogenic regulatory factors. Dev Biol. 1995 Aug;170(2):262–273. doi: 10.1006/dbio.1995.1213. [DOI] [PubMed] [Google Scholar]
  18. Huang C. F., Schmidt J. Calcium influx blocks the skeletal muscle acetylcholine receptor alpha-subunit gene in vivo. FEBS Lett. 1994 Feb 7;338(3):277–280. doi: 10.1016/0014-5793(94)80283-1. [DOI] [PubMed] [Google Scholar]
  19. Hughes S. M., Taylor J. M., Tapscott S. J., Gurley C. M., Carter W. J., Peterson C. A. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development. 1993 Aug;118(4):1137–1147. doi: 10.1242/dev.118.4.1137. [DOI] [PubMed] [Google Scholar]
  20. Kurokawa R., Söderström M., Hörlein A., Halachmi S., Brown M., Rosenfeld M. G., Glass C. K. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature. 1995 Oct 5;377(6548):451–454. doi: 10.1038/377451a0. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Leberer E., Härtner K. T., Brandl C. J., Fujii J., Tada M., MacLennan D. H., Pette D. Slow/cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast-twitch muscle. Eur J Biochem. 1989 Oct 20;185(1):51–54. doi: 10.1111/j.1432-1033.1989.tb15080.x. [DOI] [PubMed] [Google Scholar]
  23. Martonosi A. N., Dux L., Terjung R. L., Roufa D. Regulation of membrane assembly during development of sarcoplasmic reticulum: the possible role of calcium. Ann N Y Acad Sci. 1982;402:485–514. doi: 10.1111/j.1749-6632.1982.tb25771.x. [DOI] [PubMed] [Google Scholar]
  24. Merlie J. P., Mudd J., Cheng T. C., Olson E. N. Myogenin and acetylcholine receptor alpha gene promoters mediate transcriptional regulation in response to motor innervation. J Biol Chem. 1994 Jan 28;269(4):2461–2467. [PubMed] [Google Scholar]
  25. Muller A., Thelen M. H., Zuidwijk M. J., Simonides W. S., van Hardeveld C. Expression of MyoD in cultured primary myotubes is dependent on contractile activity: correlation with phenotype-specific expression of a sarcoplasmic reticulum Ca(2+)-ATPase isoform. Biochem Biophys Res Commun. 1996 Dec 4;229(1):198–204. doi: 10.1006/bbrc.1996.1780. [DOI] [PubMed] [Google Scholar]
  26. Muller A., van Hardeveld C., Simonides W. S., van Rijn J. Ca2+ homeostasis and fast-type sarcoplasmic reticulum Ca(2+)-ATPase expression in L6 muscle cells. Role of thyroid hormone. Biochem J. 1992 May 1;283(Pt 3):713–718. doi: 10.1042/bj2830713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Muller A., van Hardeveld C., Simonides W. S., van Rijn J. The elevation of sarcoplasmic reticulum Ca2(+)-ATPase levels by thyroid hormone in the L6 muscle cell line is potentiated by insulin-like growth factor-I. Biochem J. 1991 Apr 1;275(Pt 1):35–40. doi: 10.1042/bj2750035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Muller A., van der Linden G. C., Zuidwijk M. J., Simonides W. S., van der Laarse W. J., van Hardeveld C. Differential effects of thyroid hormone on the expression of sarcoplasmic reticulum Ca(2+)-ATPase isoforms in rat skeletal muscle fibers. Biochem Biophys Res Commun. 1994 Sep 15;203(2):1035–1042. doi: 10.1006/bbrc.1994.2286. [DOI] [PubMed] [Google Scholar]
  29. Nervi C., Benedetti L., Minasi A., Molinaro M., Adamo S. Arginine-vasopressin induces differentiation of skeletal myogenic cells and up-regulation of myogenin and Myf-5. Cell Growth Differ. 1995 Jan;6(1):81–89. [PubMed] [Google Scholar]
  30. Nwoye L., Mommaerts W. F., Simpson D. R., Seraydarian K., Marusich M. Evidence for a direct action of thyroid hormone in specifying muscle properties. Am J Physiol. 1982 Mar;242(3):R401–R408. doi: 10.1152/ajpregu.1982.242.3.R401. [DOI] [PubMed] [Google Scholar]
  31. Olson E. N. Signal transduction pathways that regulate skeletal muscle gene expression. Mol Endocrinol. 1993 Nov;7(11):1369–1378. doi: 10.1210/mend.7.11.8114752. [DOI] [PubMed] [Google Scholar]
  32. Park H. Y., Davidson D., Raaka B. M., Samuels H. H. The herpes simplex virus thymidine kinase gene promoter contains a novel thyroid hormone response element. Mol Endocrinol. 1993 Mar;7(3):319–330. doi: 10.1210/mend.7.3.8387156. [DOI] [PubMed] [Google Scholar]
  33. Pette D., Vrbová G. Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol. 1992;120:115–202. doi: 10.1007/BFb0036123. [DOI] [PubMed] [Google Scholar]
  34. Prost E., Koenig R. J., Moore D. D., Larsen P. R., Whalen R. G. Multiple sequences encoding potential thyroid hormone receptors isolated from mouse skeletal muscle cDNA libraries. Nucleic Acids Res. 1988 Jul 11;16(13):6248–6248. doi: 10.1093/nar/16.13.6248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Prost E., Moore D. D. CAT vectors for analysis of eukaryotic promoters and enhancers. Gene. 1986;45(1):107–111. doi: 10.1016/0378-1119(86)90138-1. [DOI] [PubMed] [Google Scholar]
  36. Rudnicki M. A., Braun T., Hinuma S., Jaenisch R. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell. 1992 Oct 30;71(3):383–390. doi: 10.1016/0092-8674(92)90508-a. [DOI] [PubMed] [Google Scholar]
  37. Samarel A. M., Engelmann G. L. Contractile activity modulates myosin heavy chain-beta expression in neonatal rat heart cells. Am J Physiol. 1991 Oct;261(4 Pt 2):H1067–H1077. doi: 10.1152/ajpheart.1991.261.4.H1067. [DOI] [PubMed] [Google Scholar]
  38. Samuels H. H., Stanley F., Casanova J. Depletion of L-3,5,3'-triiodothyronine and L-thyroxine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology. 1979 Jul;105(1):80–85. doi: 10.1210/endo-105-1-80. [DOI] [PubMed] [Google Scholar]
  39. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  40. Simonides W. S., Brent G. A., Thelen M. H., van der Linden C. G., Larsen P. R., van Hardeveld C. Characterization of the promoter of the rat sarcoplasmic endoplasmic reticulum Ca2+-ATPase 1 gene and analysis of thyroid hormone responsiveness. J Biol Chem. 1996 Dec 13;271(50):32048–32056. doi: 10.1074/jbc.271.50.32048. [DOI] [PubMed] [Google Scholar]
  41. Tang J., Jo S. A., Burden S. J. Separate pathways for synapse-specific and electrical activity-dependent gene expression in skeletal muscle. Development. 1994 Jul;120(7):1799–1804. doi: 10.1242/dev.120.7.1799. [DOI] [PubMed] [Google Scholar]
  42. Teti A., Naro F., Molinaro M., Adamo S. Transduction of arginine vasopressin signal in skeletal myogenic cells. Am J Physiol. 1993 Jul;265(1 Pt 1):C113–C121. doi: 10.1152/ajpcell.1993.265.1.C113. [DOI] [PubMed] [Google Scholar]
  43. Thelen M. H., Muller A., Zuidwijk M. J., van der Linden G. C., Simonides W. S., van Hardeveld C. Differential regulation of the expression of fast-type sarcoplasmic-reticulum Ca(2+)-ATPase by thyroid hormone and insulin-like growth factor-I in the L6 muscle cell line. Biochem J. 1994 Oct 15;303(Pt 2):467–474. doi: 10.1042/bj3030467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Thelen M. H., Simonides W. S., van Hardeveld C. Electrical stimulation of C2C12 myotubes induces contractions and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene. Biochem J. 1997 Feb 1;321(Pt 3):845–848. doi: 10.1042/bj3210845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tsay H. J., Neville C. M., Schmidt J. Protein synthesis is required for the denervation-triggered activation of acetylcholine receptor genes. FEBS Lett. 1990 Nov 12;274(1-2):69–72. doi: 10.1016/0014-5793(90)81331-h. [DOI] [PubMed] [Google Scholar]
  46. Voytik S. L., Przyborski M., Badylak S. F., Konieczny S. F. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn. 1993 Nov;198(3):214–224. doi: 10.1002/aja.1001980307. [DOI] [PubMed] [Google Scholar]
  47. Walke W., Staple J., Adams L., Gnegy M., Chahine K., Goldman D. Calcium-dependent regulation of rat and chick muscle nicotinic acetylcholine receptor (nAChR) gene expression. J Biol Chem. 1994 Jul 29;269(30):19447–19456. [PubMed] [Google Scholar]
  48. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  49. Williams G. R., Harney J. W., Moore D. D., Larsen P. R., Brent G. A. Differential capacity of wild type promoter elements for binding and trans-activation by retinoic acid and thyroid hormone receptors. Mol Endocrinol. 1992 Oct;6(10):1527–1537. doi: 10.1210/mend.6.10.1333048. [DOI] [PubMed] [Google Scholar]
  50. Witzemann V., Sakmann B. Differential regulation of MyoD and myogenin mRNA levels by nerve induced muscle activity. FEBS Lett. 1991 May 6;282(2):259–264. doi: 10.1016/0014-5793(91)80490-t. [DOI] [PubMed] [Google Scholar]
  51. Wright W. E., Sassoon D. A., Lin V. K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 1989 Feb 24;56(4):607–617. doi: 10.1016/0092-8674(89)90583-7. [DOI] [PubMed] [Google Scholar]
  52. van der Linden C. G., Simonides W. S., Muller A., van der Laarse W. J., Vermeulen J. L., Zuidwijk M. J., Moorman A. F., van Hardeveld C. Fiber-specific regulation of Ca(2+)-ATPase isoform expression by thyroid hormone in rat skeletal muscle. Am J Physiol. 1996 Dec;271(6 Pt 1):C1908–C1919. doi: 10.1152/ajpcell.1996.271.6.C1908. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES