Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jan 15;329(Pt 2):255–264. doi: 10.1042/bj3290255

Functional role for the angiotensin II receptor (AT1A) 3'-untranslated region in determining cellular responses to agonist: evidence for recognition by RNA binding proteins.

T J Thekkumkara 1, W G Thomas 1, T J Motel 1, K M Baker 1
PMCID: PMC1219039  PMID: 9425107

Abstract

We demonstrate a functional role for the 3'-untranslated region (3'-UTR) of the angiotensin II (Ang II) receptor subtype AT1A mRNA in Chinese hamster ovary (CHO-K1) cells by stably transfecting the coding region of the receptor gene with or without the 845 bp 3'-UTR. Two cell lines expressing similar levels of cell-surface receptors (with 3'-UTR, Bmax=571 fmol/mg protein; without 3'-UTR, Bmax=663 fmol/mg protein) were used in the present study. Both cell lines expressed high-affinity receptors (with 3'-UTR, Kd=0.83 nM; without 3'-UTR, Kd=0.82 nM), and binding studies with 125I-labelled Ang II in the presence of GTP[S] demonstrated that both coupled to heterotrimeric G-proteins. Despite these similarities, significant differences were observed for receptor-mediated cell signalling pathways. In cells without the 3'-UTR, Ang II stimulated an increase in cAMP accumulation (11-fold above control) and in cells with the 3'-UTR no stimulation was observed, which was consistent with previous observations in most endogenous Ang II receptor (AT1)-expressing cells. Activation of cAMP by Ang II in cells without the 3'-UTR correlated with an inhibition of DNA synthesis, determined by [3H]thymidine incorporation. Ang II-mediated responses were blocked by EXP3174, a selective non-peptide receptor antagonist. We also observed differences in the transient profiles of intracellular calcium between cells with and without the 3'-UTR in response to Ang II. In cells with the 3'-UTR, a sustained level of intracellular calcium was observed after Ang II stimulation, whereas cells without the 3'-UTR displayed a full return to basal level within 50 s of Ang II treatment. Even though the expressed exogenous gene is under the control of a constitutively expressing promoter (cytomegalovirus promoter), Northern-blot analysis revealed a considerably greater accumulation of AT1A mRNA in cells without the 3'-UTR compared with cells with the 3'-UTR. Analysis of the decay rate of the AT1A mRNA in cells with and without the 3'-UTR revealed that the normally unstable AT1A receptor mRNA became highly stable by removing its 3'-UTR, identifying a role for the 3'-UTR in mRNA destabilization. Interestingly, both cells express similar levels of receptors at the cell surface, suggesting that the 3'-UTR is also involved in the efficient translation and/or translocation of the receptor protein to the plasma membrane. We hypothesized that these 3'-UTR-mediated functions of the receptor are regulated by RNA-binding proteins. To identify possible RNA-binding proteins for the AT1A 3'-UTR, cellular extracts were prepared from parental CHO-K1 cells and 3'-UTR-binding assays, electrophoretic mobility-shift assays and UV crosslinking studies were performed. A major cellular protein of 55 kDa was identified, which specifically interacted with the 3'-UTR. Our data suggest that the 3'-UTR of the AT1A can control specific receptor functions, perhaps via selective recognition of the 3'-UTR by RNA-binding proteins.

Full Text

The Full Text of this article is available as a PDF (452.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberta J. A., Rundell K., Stiles C. D. Identification of an activity that interacts with the 3'-untranslated region of c-myc mRNA and the role of its target sequence in mediating rapid mRNA degradation. J Biol Chem. 1994 Feb 11;269(6):4532–4538. [PubMed] [Google Scholar]
  2. Baker K. M., Booz G. W., Dostal D. E. Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol. 1992;54:227–241. doi: 10.1146/annurev.ph.54.030192.001303. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brewer G. An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol Cell Biol. 1991 May;11(5):2460–2466. doi: 10.1128/mcb.11.5.2460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brooker G., Terasaki W. L., Price M. G. Gammaflow: a completely automated radioimmunoassay system. Science. 1976 Oct 15;194(4262):270–276. doi: 10.1126/science.184530. [DOI] [PubMed] [Google Scholar]
  6. Chochola J., Fabre C., Bellan C., Luis J., Bourgerie S., Abadie B., Champion S., Marvaldi J., el Battari A. Structural and functional analysis of the human vasoactive intestinal peptide receptor glycosylation. Alteration of receptor function by wheat germ agglutinin. J Biol Chem. 1993 Feb 5;268(4):2312–2318. [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Decker C. J., Parker R. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci. 1994 Aug;19(8):336–340. doi: 10.1016/0968-0004(94)90073-6. [DOI] [PubMed] [Google Scholar]
  9. Dostal D. E., Murahashi T., Peach M. J. Regulation of cytosolic calcium by angiotensins in vascular smooth muscle. Hypertension. 1990 Jun;15(6 Pt 2):815–822. doi: 10.1161/01.hyp.15.6.815. [DOI] [PubMed] [Google Scholar]
  10. Frost G. H., Bergmann J. S., Carney D. H. Glycosylation of high-affinity thrombin receptors appears necessary for thrombin binding. Biochem Biophys Res Commun. 1991 Oct 15;180(1):349–355. doi: 10.1016/s0006-291x(05)81299-9. [DOI] [PubMed] [Google Scholar]
  11. Henics T., Sanfridson A., Hamilton B. J., Nagy E., Rigby W. F. Enhanced stability of interleukin-2 mRNA in MLA 144 cells. Possible role of cytoplasmic AU-rich sequence-binding proteins. J Biol Chem. 1994 Feb 18;269(7):5377–5383. [PubMed] [Google Scholar]
  12. Inagami T., Iwai N., Sasaki K., Yamamo Y., Bardhan S., Chaki S., Guo D. F., Furuta H. Cloning, expression and regulation of angiotensin II receptors. J Hypertens. 1992 Aug;10(8):713–716. [PubMed] [Google Scholar]
  13. Iwai N., Inagami T. Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett. 1992 Feb 24;298(2-3):257–260. doi: 10.1016/0014-5793(92)80071-n. [DOI] [PubMed] [Google Scholar]
  14. Jackson R. J. Cytoplasmic regulation of mRNA function: the importance of the 3' untranslated region. Cell. 1993 Jul 16;74(1):9–14. doi: 10.1016/0092-8674(93)90290-7. [DOI] [PubMed] [Google Scholar]
  15. Johnson M. C., Aguilera G. Studies on the mechanism of the novel stimulatory effect of angiotensin-II on adenylate cyclase in rat fetal skin fibroblasts. Endocrinology. 1992 Nov;131(5):2404–2412. doi: 10.1210/endo.131.5.1330500. [DOI] [PubMed] [Google Scholar]
  16. Kabnick K. S., Housman D. E. Determinants that contribute to cytoplasmic stability of human c-fos and beta-globin mRNAs are located at several sites in each mRNA. Mol Cell Biol. 1988 Aug;8(8):3244–3250. doi: 10.1128/mcb.8.8.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kislauskis E. H., Li Z., Singer R. H., Taneja K. L. Isoform-specific 3'-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol. 1993 Oct;123(1):165–172. doi: 10.1083/jcb.123.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kislauskis E. H., Zhu X., Singer R. H. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J Cell Biol. 1994 Oct;127(2):441–451. doi: 10.1083/jcb.127.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee N. H., Earle-Hughes J., Fraser C. M. Agonist-mediated destabilization of m1 muscarinic acetylcholine receptor mRNA. Elements involved in mRNA stability are localized in the 3'-untranslated region. J Biol Chem. 1994 Feb 11;269(6):4291–4298. [PubMed] [Google Scholar]
  20. Makita N., Iwai N., Inagami T., Badr K. F. Two distinct pathways in the down-regulation of type-1 angiotension II receptor gene in rat glomerular mesangial cells. Biochem Biophys Res Commun. 1992 May 29;185(1):142–146. doi: 10.1016/s0006-291x(05)80967-2. [DOI] [PubMed] [Google Scholar]
  21. Martin M. M., White C. R., Li H., Miller P. J., Elton T. S. A functional comparison of the rat type-1 angiotensin II receptors (AT1AR and AT1BR). Regul Pept. 1995 Dec 14;60(2-3):135–147. doi: 10.1016/0167-0115(95)00123-9. [DOI] [PubMed] [Google Scholar]
  22. Murphy T. J., Alexander R. W., Griendling K. K., Runge M. S., Bernstein K. E. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991 May 16;351(6323):233–236. doi: 10.1038/351233a0. [DOI] [PubMed] [Google Scholar]
  23. Müllner E. W., Neupert B., Kühn L. C. A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell. 1989 Jul 28;58(2):373–382. doi: 10.1016/0092-8674(89)90851-9. [DOI] [PubMed] [Google Scholar]
  24. Nickenig G., Murphy T. J. Enhanced angiotensin receptor type 1 mRNA degradation and induction of polyribosomal mRNA binding proteins by angiotensin II in vascular smooth muscle cells. Mol Pharmacol. 1996 Oct;50(4):743–751. [PubMed] [Google Scholar]
  25. Ostareck-Lederer A., Ostareck D. H., Standart N., Thiele B. J. Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3' untranslated region. EMBO J. 1994 Mar 15;13(6):1476–1481. doi: 10.1002/j.1460-2075.1994.tb06402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Port J. D., Huang L. Y., Malbon C. C. Beta-adrenergic agonists that down-regulate receptor mRNA up-regulate a M(r) 35,000 protein(s) that selectively binds to beta-adrenergic receptor mRNAs. J Biol Chem. 1992 Nov 25;267(33):24103–24108. [PubMed] [Google Scholar]
  27. Rastinejad F., Blau H. M. Genetic complementation reveals a novel regulatory role for 3' untranslated regions in growth and differentiation. Cell. 1993 Mar 26;72(6):903–917. doi: 10.1016/0092-8674(93)90579-f. [DOI] [PubMed] [Google Scholar]
  28. Rastinejad F., Conboy M. J., Rando T. A., Blau H. M. Tumor suppression by RNA from the 3' untranslated region of alpha-tropomyosin. Cell. 1993 Dec 17;75(6):1107–1117. doi: 10.1016/0092-8674(93)90320-p. [DOI] [PubMed] [Google Scholar]
  29. Sachs A. B. Messenger RNA degradation in eukaryotes. Cell. 1993 Aug 13;74(3):413–421. doi: 10.1016/0092-8674(93)80043-e. [DOI] [PubMed] [Google Scholar]
  30. Sadoshima J., Izumo S. Signal transduction pathways of angiotensin II--induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipid-derived second messengers. Circ Res. 1993 Sep;73(3):424–438. doi: 10.1161/01.res.73.3.424. [DOI] [PubMed] [Google Scholar]
  31. Schorb W., Booz G. W., Dostal D. E., Conrad K. M., Chang K. C., Baker K. M. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res. 1993 Jun;72(6):1245–1254. doi: 10.1161/01.res.72.6.1245. [DOI] [PubMed] [Google Scholar]
  32. Simon G., Altman S. Subpressor angiotensin II is a bifunctional growth factor of vascular muscle in rats. J Hypertens. 1992 Oct;10(10):1165–1171. doi: 10.1097/00004872-199210000-00009. [DOI] [PubMed] [Google Scholar]
  33. Swillens S. How to estimate the total receptor concentration when the specific radioactivity of the ligand is unknown. Trends Pharmacol Sci. 1992 Dec;13(12):430–434. doi: 10.1016/0165-6147(92)90139-w. [DOI] [PubMed] [Google Scholar]
  34. Thekkumkara T. J., Du J., Dostal D. E., Motel T. J., Thomas W. G., Baker K. M. Stable expression of a functional rat angiotensin II (AT1A) receptor in CHO-K1 cells: rapid desensitization by angiotensin II. Mol Cell Biochem. 1995 May 10;146(1):79–89. doi: 10.1007/BF00926885. [DOI] [PubMed] [Google Scholar]
  35. Thekkumkara T. J., Du J., Zwaagstra C., Conrad K. M., Krupinski J., Baker K. M. A role for cAMP in angiotensin II mediated inhibition of cell growth in AT1A receptor-transfected CHO-K1 cells. Mol Cell Biochem. 1995 Nov 8;152(1):77–86. doi: 10.1007/BF01076466. [DOI] [PubMed] [Google Scholar]
  36. Tholanikunnel B. G., Granneman J. G., Malbon C. C. The M(r) 35,000 beta-adrenergic receptor mRNA-binding protein binds transcripts of G-protein-linked receptors which undergo agonist-induced destabilization. J Biol Chem. 1995 May 26;270(21):12787–12793. doi: 10.1074/jbc.270.21.12787. [DOI] [PubMed] [Google Scholar]
  37. Wharton R. P., Struhl G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell. 1991 Nov 29;67(5):955–967. doi: 10.1016/0092-8674(91)90368-9. [DOI] [PubMed] [Google Scholar]
  38. Wilhelm J. E., Vale R. D. RNA on the move: the mRNA localization pathway. J Cell Biol. 1993 Oct;123(2):269–274. doi: 10.1083/jcb.123.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zaidi S. H., Denman R., Malter J. S. Multiple proteins interact at a unique cis-element in the 3'-untranslated region of amyloid precursor protein mRNA. J Biol Chem. 1994 Sep 30;269(39):24000–24006. [PubMed] [Google Scholar]
  40. Zubiaga A. M., Belasco J. G., Greenberg M. E. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol. 1995 Apr;15(4):2219–2230. doi: 10.1128/mcb.15.4.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. de Gasparo M., Husain A., Alexander W., Catt K. J., Chiu A. T., Drew M., Goodfriend T., Harding J. W., Inagami T., Timmermans P. B. Proposed update of angiotensin receptor nomenclature. Hypertension. 1995 May;25(5):924–927. doi: 10.1161/01.hyp.25.5.924. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES