Abstract
The alpha-toxin-permeabilized betaTC3 cell has been utilized as an experimental model for the identification of protein phosphatases responsible for the dephosphorylation and deactivation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) in situ. In this model, the elevation of Ca2+ from 0.05 to 10 microM induced the near-total conversion of CaM kinase II into a Ca2+/calmodulin-independent (autonomous) form characteristic of autophosphorylated, activated enzyme. On the removal of Ca2+, the activation state of CaM Kinase II rapidly returned to prestimulated levels. This reversal was slowed, but not prevented, by the inhibitors of protein phosphatase-1 (PP-1) and PP-2A, okadaic acid and calyculin A, and by the selective chelation of Mg2+ by the addition of EDTA. Near-complete prevention of enzyme deactivation, however, was observed in the combined presence of both okadaic acid and EDTA. Under these conditions, CaM kinase II phosphatase was more sensitive to calyculin A relative to okadaic acid, characteristic of the involvement of PP-1. CaM kinase II deactivation was not affected by FK-506, eliminating the involvement of PP-2B in this process. These data suggest that CaM kinase II dephosphorylation and deactivation in the pancreatic beta-cell is mediated by the combined action of an okadaic-acid-sensitive phosphatase and a Mg2+-dependent phosphatase, such as PP-2C.
Full Text
The Full Text of this article is available as a PDF (302.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
- Ammälä C., Eliasson L., Bokvist K., Berggren P. O., Honkanen R. E., Sjöholm A., Rorsman P. Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4343–4347. doi: 10.1073/pnas.91.10.4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atwater I., Frankel B. J., Rojas E., Grodsky G. M. Beta cell membrane potential and insulin release; role of calcium and calcium:magnesium ratio. Q J Exp Physiol. 1983 Apr;68(2):233–245. doi: 10.1113/expphysiol.1983.sp002715. [DOI] [PubMed] [Google Scholar]
- Babb E. L., Tarpley J., Landt M., Easom R. A. Muscarinic activation of Ca2+/calmodulin-dependent protein kinase II in pancreatic islets. Temporal dissociation of kinase activation and insulin secretion. Biochem J. 1996 Jul 1;317(Pt 1):167–172. doi: 10.1042/bj3170167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes G. N., Slevin J. T., Vanaman T. C. Rat brain protein phosphatase 2A: an enzyme that may regulate autophosphorylated protein kinases. J Neurochem. 1995 Jan;64(1):340–353. doi: 10.1046/j.1471-4159.1995.64010340.x. [DOI] [PubMed] [Google Scholar]
- Bennett L. L., Curry D. L., Grodsky G. M. Calcium-magnesium antagonism in insulin secretion by the perfused rat pancreas. Endocrinology. 1969 Sep;85(3):594–596. doi: 10.1210/endo-85-3-594. [DOI] [PubMed] [Google Scholar]
- Bers D. M. A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am J Physiol. 1982 May;242(5):C404–C408. doi: 10.1152/ajpcell.1982.242.5.C404. [DOI] [PubMed] [Google Scholar]
- Braun A. P., Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol. 1995;57:417–445. doi: 10.1146/annurev.ph.57.030195.002221. [DOI] [PubMed] [Google Scholar]
- Cohen P. T. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci. 1997 Jul;22(7):245–251. doi: 10.1016/s0968-0004(97)01060-8. [DOI] [PubMed] [Google Scholar]
- Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
- Colbran R. J. Inactivation of Ca2+/calmodulin-dependent protein kinase II by basal autophosphorylation. J Biol Chem. 1993 Apr 5;268(10):7163–7170. [PubMed] [Google Scholar]
- Daniel J. L., Holmsen H., Adelstein R. S. Thrombin-stimulated myosin phosphorylation in intact platelets and its possible involvement secretion. Thromb Haemost. 1977 Dec 15;38(4):984–989. [PubMed] [Google Scholar]
- Easom R. A., Filler N. R., Ings E. M., Tarpley J., Landt M. Correlation of the activation of Ca2+/calmodulin-dependent protein kinase II with the initiation of insulin secretion from perifused pancreatic islets. Endocrinology. 1997 Jun;138(6):2359–2364. doi: 10.1210/endo.138.6.5179. [DOI] [PubMed] [Google Scholar]
- Efrat S., Linde S., Kofod H., Spector D., Delannoy M., Grant S., Hanahan D., Baekkeskov S. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9037–9041. doi: 10.1073/pnas.85.23.9037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukunaga K., Kobayashi T., Tamura S., Miyamoto E. Dephosphorylation of autophosphorylated Ca2+/calmodulin-dependent protein kinase II by protein phosphatase 2C. J Biol Chem. 1993 Jan 5;268(1):133–137. [PubMed] [Google Scholar]
- Fukunaga K., Rich D. P., Soderling T. R. Generation of the Ca2(+)-independent form of Ca2+/calmodulin-dependent protein kinase II in cerebellar granule cells. J Biol Chem. 1989 Dec 25;264(36):21830–21836. [PubMed] [Google Scholar]
- Hanson P. I., Kapiloff M. S., Lou L. L., Rosenfeld M. G., Schulman H. Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron. 1989 Jul;3(1):59–70. doi: 10.1016/0896-6273(89)90115-3. [DOI] [PubMed] [Google Scholar]
- Hanson P. I., Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem. 1992;61:559–601. doi: 10.1146/annurev.bi.61.070192.003015. [DOI] [PubMed] [Google Scholar]
- Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
- Hwang J., Bragado M. J., Duan R. D., Williams J. A. Protein phosphatase inhibitors potentiate Ca2+/calmodulin-dependent protein kinase II activity in rat pancreatic acinar cells. Biochem Biophys Res Commun. 1996 Aug 14;225(2):520–524. doi: 10.1006/bbrc.1996.1205. [DOI] [PubMed] [Google Scholar]
- Ingebritsen T. S., Cohen P. Protein phosphatases: properties and role in cellular regulation. Science. 1983 Jul 22;221(4608):331–338. doi: 10.1126/science.6306765. [DOI] [PubMed] [Google Scholar]
- Ishihara H., Martin B. L., Brautigan D. L., Karaki H., Ozaki H., Kato Y., Fusetani N., Watabe S., Hashimoto K., Uemura D. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989 Mar 31;159(3):871–877. doi: 10.1016/0006-291x(89)92189-x. [DOI] [PubMed] [Google Scholar]
- Jonas J. C., Li G., Palmer M., Weller U., Wollheim C. B. Dynamics of Ca2+ and guanosine 5'-[gamma-thio]triphosphate action on insulin secretion from alpha-toxin-permeabilized HIT-T15 cells. Biochem J. 1994 Jul 15;301(Pt 2):523–529. doi: 10.1042/bj3010523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kekow J., Ulrichs K., Müller-Ruchholtz W., Gross W. L. Measurement of rat insulin. Enzyme-linked immunosorbent assay with increased sensitivity, high accuracy, and greater practicability than established radioimmunoassay. Diabetes. 1988 Mar;37(3):321–326. doi: 10.2337/diab.37.3.321. [DOI] [PubMed] [Google Scholar]
- Lai Y., Nairn A. C., Greengard P. Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4253–4257. doi: 10.1073/pnas.83.12.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
- Lou L. L., Schulman H. Distinct autophosphorylation sites sequentially produce autonomy and inhibition of the multifunctional Ca2+/calmodulin-dependent protein kinase. J Neurosci. 1989 Jun;9(6):2020–2032. doi: 10.1523/JNEUROSCI.09-06-02020.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacNicol M., Jefferson A. B., Schulman H. Ca2+/calmodulin kinase is activated by the phosphatidylinositol signaling pathway and becomes Ca2(+)-independent in PC12 cells. J Biol Chem. 1990 Oct 25;265(30):18055–18058. [PubMed] [Google Scholar]
- Mayer P., Jochum C., Schatz H., Pfeiffer A. Okadaic acid indicates a major function for protein phosphatases in stimulus-response coupling of RINm5F rat insulinoma cells. Exp Clin Endocrinol. 1994;102(4):313–319. doi: 10.1055/s-0029-1211297. [DOI] [PubMed] [Google Scholar]
- Mumby M. C., Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev. 1993 Oct;73(4):673–699. doi: 10.1152/physrev.1993.73.4.673. [DOI] [PubMed] [Google Scholar]
- Ratcliff H., Jones P. M. Effects of okadaic acid on insulin secretion from rat islets of Langerhans. Biochim Biophys Acta. 1993 Jan 17;1175(2):188–191. doi: 10.1016/0167-4889(93)90022-h. [DOI] [PubMed] [Google Scholar]
- Saitoh Y., Yamamoto H., Fukunaga K., Matsukado Y., Miyamoto E. Inactivation and reactivation of the multifunctional calmodulin-dependent protein kinase from brain by autophosphorylation and dephosphorylation: involvement of protein phosphatases from brain. J Neurochem. 1987 Oct;49(4):1286–1292. doi: 10.1111/j.1471-4159.1987.tb10022.x. [DOI] [PubMed] [Google Scholar]
- Schwaninger M., Blume R., Oetjen E., Lux G., Knepel W. Inhibition of cAMP-responsive element-mediated gene transcription by cyclosporin A and FK506 after membrane depolarization. J Biol Chem. 1993 Nov 5;268(31):23111–23115. [PubMed] [Google Scholar]
- Schworer C. M., Colbran R. J., Soderling T. R. Reversible generation of a Ca2+-independent form of Ca2+(calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem. 1986 Jul 5;261(19):8581–8584. [PubMed] [Google Scholar]
- Shenolikar S., Nairn A. C. Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res. 1991;23:1–121. [PubMed] [Google Scholar]
- Shields S. M., Ingebritsen T. S., Kelly P. T. Identification of protein phosphatase 1 in synaptic junctions: dephosphorylation of endogenous calmodulin-dependent kinase II and synapse-enriched phosphoproteins. J Neurosci. 1985 Dec;5(12):3414–3422. doi: 10.1523/JNEUROSCI.05-12-03414.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soderling T. R. Calcium/calmodulin-dependent protein kinase II: role in learning and memory. Mol Cell Biochem. 1993 Nov;127-128:93–101. doi: 10.1007/BF01076760. [DOI] [PubMed] [Google Scholar]
- Strack S., Barban M. A., Wadzinski B. E., Colbran R. J. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J Neurochem. 1997 May;68(5):2119–2128. doi: 10.1046/j.1471-4159.1997.68052119.x. [DOI] [PubMed] [Google Scholar]
- Strack S., Choi S., Lovinger D. M., Colbran R. J. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J Biol Chem. 1997 May 23;272(21):13467–13470. doi: 10.1074/jbc.272.21.13467. [DOI] [PubMed] [Google Scholar]
- Tamagawa T., Iguchi A., Uemura K., Miura H., Nonogaki K., Ishiguro T., Sakamoto N. Effects of the protein phosphatase inhibitors okadaic acid and calyculin A on insulin release from rat pancreatic islets. Endocrinol Jpn. 1992 Jun;39(3):325–329. doi: 10.1507/endocrj1954.39.325. [DOI] [PubMed] [Google Scholar]
- Thiel G., Czernik A. J., Gorelick F., Nairn A. C., Greengard P. Ca2+/calmodulin-dependent protein kinase II: identification of threonine-286 as the autophosphorylation site in the alpha subunit associated with the generation of Ca2+-independent activity. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6337–6341. doi: 10.1073/pnas.85.17.6337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vandenheede J. R., Yang S. D., Goris J., Merlevede W. ATP x Mg-dependent protein phosphatase from rabbit skeletal muscle. II. Purification of the activating factor and its characterization as a bifunctional protein also displaying synthase kinase activity. J Biol Chem. 1980 Dec 25;255(24):11768–11774. [PubMed] [Google Scholar]
- Velasco G., Guzmán M., Zammit V. A., Geelen M. J. Involvement of Ca2+/calmodulin-dependent protein kinase II in the activation of carnitine palmitoyltransferase I by okadaic acid in rat hepatocytes. Biochem J. 1997 Jan 1;321(Pt 1):211–216. doi: 10.1042/bj3210211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wenham R. M., Landt M., Easom R. A. Glucose activates the multifunctional Ca2+/calmodulin-dependent protein kinase II in isolated rat pancreatic islets. J Biol Chem. 1994 Feb 18;269(7):4947–4952. [PubMed] [Google Scholar]
- Wera S., Hemmings B. A. Serine/threonine protein phosphatases. Biochem J. 1995 Oct 1;311(Pt 1):17–29. doi: 10.1042/bj3110017. [DOI] [PMC free article] [PubMed] [Google Scholar]