Abstract
The role of a conserved polar motif (STS) in the exofacial loop between helices 7 and 8 of GLUT4 for transporter function was investigated by site-directed mutagenesis and expression of the constructs in COS-7 cells. Reconstituted glucose-transport activity, cytochalasin B binding and photolabelling with the exofacial label 2-N4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1, 3-bis-(d-mannosyloxy)-2-propylamine (ATB-BMPA) were assayed in membranes from transfected cells and corrected for immunoreactivity of expressed transporters. Replacement of Ser-294 with Ala or Thr suppressed transport activity and cytochalasin B binding. ATB-BMPA photolabelling was normal in S294A mutants, and even increased in S294T mutants. Replacement of Thr-295 with Ala suppressed transport activity and cytochalasin B binding, whereas ATB-BMPA photolabelling was normal; substitution of Ser failed to alter the investigated parameters. Similarly, exchanging Ser-296 for Ala generated a normally functioning protein. The data suggest that Ser-294 and Thr-295 are involved in the conformational change in GLUT during the transport process, and that their substitution may arrest the transporter in an outward-facing conformation.
Full Text
The Full Text of this article is available as a PDF (330.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Appleman J. R., Lienhard G. E. Kinetics of the purified glucose transporter. Direct measurement of the rates of interconversion of transporter conformers. Biochemistry. 1989 Oct 3;28(20):8221–8227. doi: 10.1021/bi00446a038. [DOI] [PubMed] [Google Scholar]
- Bell G. I., Kayano T., Buse J. B., Burant C. F., Takeda J., Lin D., Fukumoto H., Seino S. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990 Mar;13(3):198–208. doi: 10.2337/diacare.13.3.198. [DOI] [PubMed] [Google Scholar]
- Birnbaum M. J. Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell. 1989 Apr 21;57(2):305–315. doi: 10.1016/0092-8674(89)90968-9. [DOI] [PubMed] [Google Scholar]
- Clark A. E., Holman G. D. Exofacial photolabelling of the human erythrocyte glucose transporter with an azitrifluoroethylbenzoyl-substituted bismannose. Biochem J. 1990 Aug 1;269(3):615–622. doi: 10.1042/bj2690615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia J. C., Strube M., Leingang K., Keller K., Mueckler M. M. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes. J Biol Chem. 1992 Apr 15;267(11):7770–7776. [PubMed] [Google Scholar]
- Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashiramoto M., Kadowaki T., Clark A. E., Muraoka A., Momomura K., Sakura H., Tobe K., Akanuma Y., Yazaki Y., Holman G. D. Site-directed mutagenesis of GLUT1 in helix 7 residue 282 results in perturbation of exofacial ligand binding. J Biol Chem. 1992 Sep 5;267(25):17502–17507. [PubMed] [Google Scholar]
- Holman G. D., Rees W. D. Photolabelling of the hexose transporter at external and internal sites: fragmentation patterns and evidence for a conformational change. Biochim Biophys Acta. 1987 Mar 12;897(3):395–405. doi: 10.1016/0005-2736(87)90437-8. [DOI] [PubMed] [Google Scholar]
- Joost H. G., Steinfelder H. J. Forskolin inhibits insulin-stimulated glucose transport in rat adipose cells by a direct interaction with the glucose transporter. Mol Pharmacol. 1987 Mar;31(3):279–283. [PubMed] [Google Scholar]
- Katagiri H., Asano T., Shibasaki Y., Lin J. L., Tsukuda K., Ishihara H., Akanuma Y., Takaku F., Oka Y. Substitution of leucine for tryptophan 412 does not abolish cytochalasin B labeling but markedly decreases the intrinsic activity of GLUT1 glucose transporter. J Biol Chem. 1991 Apr 25;266(12):7769–7773. [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Mori H., Hashiramoto M., Clark A. E., Yang J., Muraoka A., Tamori Y., Kasuga M., Holman G. D. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation. J Biol Chem. 1994 Apr 15;269(15):11578–11583. [PubMed] [Google Scholar]
- Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
- Mueckler M. Family of glucose-transporter genes. Implications for glucose homeostasis and diabetes. Diabetes. 1990 Jan;39(1):6–11. doi: 10.2337/diacare.39.1.6. [DOI] [PubMed] [Google Scholar]
- Muraoka A., Hashiramoto M., Clark A. E., Edwards L. C., Sakura H., Kadowaki T., Holman G. D., Kasuga M. Analysis of the structural features of the C-terminus of GLUT1 that are required for transport catalytic activity. Biochem J. 1995 Oct 15;311(Pt 2):699–704. doi: 10.1042/bj3110699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson F. W., Blevins T. L., Suzuki K., Kono T. An improved method of reconstitution of adipocyte glucose transport activity. Anal Biochem. 1982 May 1;122(1):10–19. doi: 10.1016/0003-2697(82)90244-5. [DOI] [PubMed] [Google Scholar]
- Rosenthal H. E. A graphic method for the determination and presentation of binding parameters in a complex system. Anal Biochem. 1967 Sep;20(3):525–532. doi: 10.1016/0003-2697(67)90297-7. [DOI] [PubMed] [Google Scholar]
- Schürmann A., Keller K., Monden I., Brown F. M., Wandel S., Shanahan M. F., Joost H. G. Glucose transport activity and photolabelling with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (IAPS)-forskolin of two mutants at tryptophan-388 and -412 of the glucose transporter GLUT1: dissociation of the binding domains of forskolin and glucose. Biochem J. 1993 Mar 1;290(Pt 2):497–501. doi: 10.1042/bj2900497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schürmann A., Mieskes G., Joost H. G. Phosphorylation of the adipose/muscle-type glucose transporter (GLUT4) and its relationship to glucose transport activity. Biochem J. 1992 Jul 1;285(Pt 1):223–228. doi: 10.1042/bj2850223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schürmann A., Monden I., Joost H. G., Keller K. Subcellular distribution and activity of glucose transporter isoforms GLUT1 and GLUT4 transiently expressed in COS-7 cells. Biochim Biophys Acta. 1992 Jul 15;1131(3):245–252. doi: 10.1016/0167-4781(92)90022-r. [DOI] [PubMed] [Google Scholar]
- Schürmann A., Rosenthal W., Hinsch K. D., Joost H. G. Differential sensitivity to guanine nucleotides of basal and insulin-stimulated glucose transporter activity reconstituted from adipocyte membrane fractions. FEBS Lett. 1989 Sep 25;255(2):259–264. doi: 10.1016/0014-5793(89)81102-0. [DOI] [PubMed] [Google Scholar]
- Skelly P. J., Kim J. W., Cunningham J., Shoemaker C. B. Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni. J Biol Chem. 1994 Feb 11;269(6):4247–4253. [PubMed] [Google Scholar]
- Walmsley A. R. The dynamics of the glucose transporter. Trends Biochem Sci. 1988 Jun;13(6):226–231. doi: 10.1016/0968-0004(88)90089-8. [DOI] [PubMed] [Google Scholar]
- Wandel S., Schurmann A., Becker W., Summers S. A., Shanahan M. F., Joost H. G. Mutation of two conserved arginine residues in the glucose transporter GLUT4 supresses transport activity, but not glucose-inhibitable binding of inhibitory ligands. Naunyn Schmiedebergs Arch Pharmacol. 1995 Dec;353(1):36–41. doi: 10.1007/BF00168913. [DOI] [PubMed] [Google Scholar]
- Wandel S., Schürmann A., Becker W., Summers S. A., Shanahan M. F., Joost H. G. Substitution of conserved tyrosine residues in helix 4 (Y143) and 7 (Y293) affects the activity, but not IAPS-forskolin binding, of the glucose transporter GLUT4. FEBS Lett. 1994 Jul 11;348(2):114–118. doi: 10.1016/0014-5793(94)00558-3. [DOI] [PubMed] [Google Scholar]
- Weiland M., Schürmann A., Schmidt W. E., Joost H. G. Development of the hormone-sensitive glucose transport activity in differentiating 3T3-L1 murine fibroblasts. Role of the two transporter species and their subcellular localization. Biochem J. 1990 Sep 1;270(2):331–336. doi: 10.1042/bj2700331. [DOI] [PMC free article] [PubMed] [Google Scholar]