Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jan 15;329(Pt 2):303–312. doi: 10.1042/bj3290303

Multiple forms of DNA polymerase from the thermo-acidophilic eubacterium Bacillus acidocaldarius: purification, biochemical characterization and possible biological role.

M De Falco 1, P Grippo 1, M Rossi 1, P Orlando 1
PMCID: PMC1219045  PMID: 9425113

Abstract

Two DNA polymerase isoenzymes, called DpA and DpB on the basis of their elution order from DEAE cellulose, were purified to homogeneity from the thermo-acidophilic eubacterium Bacillus acidocaldarius. The enzymes are weakly acidophilic proteins constituted by a single subunit of 117 and 103 kDa respectively. DpA and DpB differ in thermostability, in thermophilicity, in sensitivity to assay conditions and in resistance to sulphydryl-group blocking agents such as N-ethylmaleimide and p-hydroxymercuriobenzoate. They differ also in synthetic template-primer utilization, in the apparent Km for dNTPs and in processivity. In particular, DpA utilizes more effic iently synthetic templates-primers such as poly(dA).poly(dT), poly(dT). (rA)12-18 and poly(rA).(dT)12-18 and presents a greater tendency to accept dNTP analogues modified in the sugar or in the base ring, such as cytosine beta-d-arabinofuranoside 5'-triphosphate, 2',3'-dideoxyribonucleosides 5'-triphosphate, butylphenyl-dGTP and digoxigenin-conjugated dUTP. In addition, DpA presents an exonuclease activity that preferentially hydrolyses DNA in the 5'-3' direction, whereas DpB lacks this activity. The possible biological role of the enzymes is discussed.

Full Text

The Full Text of this article is available as a PDF (469.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bambara R. A., Jessee C. B. Properties of DNA polymerases delta and epsilon, and their roles in eukaryotic DNA replication. Biochim Biophys Acta. 1991 Jan 17;1088(1):11–24. doi: 10.1016/0167-4781(91)90147-e. [DOI] [PubMed] [Google Scholar]
  2. Bambara R. A., Uyemura D., Choi T. On the processive mechanism of Escherichia coli DNA polymerase I. Quantitative assessment of processivity. J Biol Chem. 1978 Jan 25;253(2):413–423. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chien A., Edgar D. B., Trela J. M. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976 Sep;127(3):1550–1557. doi: 10.1128/jb.127.3.1550-1557.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. D'Auria S., La Cara F., Nazzaro F., Vespa N., Rossi M. A thermophilic alcohol dehydrogenase from Bacillus acidocaldarius not reactive towards ketones. J Biochem. 1996 Sep;120(3):498–504. doi: 10.1093/oxfordjournals.jbchem.a021441. [DOI] [PubMed] [Google Scholar]
  7. Eckert K. A., Kunkel T. A. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. 1990 Jul 11;18(13):3739–3744. doi: 10.1093/nar/18.13.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elie C., De Recondo A. M., Forterre P. Thermostable DNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Purification, characterization and immunological properties. Eur J Biochem. 1989 Jan 2;178(3):619–626. doi: 10.1111/j.1432-1033.1989.tb14490.x. [DOI] [PubMed] [Google Scholar]
  9. Elie C., Salhi S., Rossignol J. M., Forterre P., De Recondo A. M. A DNA polymerase from a thermoacidophilic archaebacterium: evolutionary and technological interests. Biochim Biophys Acta. 1988 Dec 20;951(2-3):261–267. doi: 10.1016/0167-4781(88)90095-4. [DOI] [PubMed] [Google Scholar]
  10. Goodman M. F., Creighton S., Bloom L. B., Petruska J. Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol. 1993;28(2):83–126. doi: 10.3109/10409239309086792. [DOI] [PubMed] [Google Scholar]
  11. Grippo P., Locorotondo G., Caruso A. Characterization of the two major dna polymerase activities in oocytes and eggs of Xenopus laevis. FEBS Lett. 1975 Mar 1;51(1):137–142. doi: 10.1016/0014-5793(75)80871-4. [DOI] [PubMed] [Google Scholar]
  12. Görg A., Postel W., Westermeier R. Ultrathin-layer isoelectric focusing in polyacrylamide gels on cellophane. Anal Biochem. 1978 Aug 15;89(1):60–70. doi: 10.1016/0003-2697(78)90726-1. [DOI] [PubMed] [Google Scholar]
  13. Hamal A., Forterre P., Elie C. Purification and characterization of a DNA polymerase from the archaebacterium Thermoplasma acidophilum. Eur J Biochem. 1990 Jul 5;190(3):517–521. doi: 10.1111/j.1432-1033.1990.tb15604.x. [DOI] [PubMed] [Google Scholar]
  14. Innis M. A., Myambo K. B., Gelfand D. H., Brow M. A. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9436–9440. doi: 10.1073/pnas.85.24.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. doi: 10.1146/annurev.bi.63.070194.004021. [DOI] [PubMed] [Google Scholar]
  16. Kaledin A. S., Sliusarenko A. G., Gorodetskii S. I. Vydelenie i svoistva DNK-polimerazy iz ékstremal'no-termofil'noi bakterii Thermus flavus. Biokhimiia. 1981 Sep;46(9):1576–1584. [PubMed] [Google Scholar]
  17. Khan N. N., Wright G. E., Dudycz L. W., Brown N. C. Butylphenyl dGTP: a selective and potent inhibitor of mammalian DNA polymerase alpha. Nucleic Acids Res. 1984 Apr 25;12(8):3695–3706. doi: 10.1093/nar/12.8.3695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klimczak L. J., Grummt F., Burger K. J. Purification and characterization of DNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Nucleic Acids Res. 1985 Jul 25;13(14):5269–5282. doi: 10.1093/nar/13.14.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kong H., Kucera R. B., Jack W. E. Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J Biol Chem. 1993 Jan 25;268(3):1965–1975. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Loeb L. A., Tartof K. D., Travaglini E. C. Copying natural RNAs with E. coli DNA polymerase I. Nat New Biol. 1973 Mar 21;242(116):66–69. doi: 10.1038/newbio242066a0. [DOI] [PubMed] [Google Scholar]
  22. Lundberg K. S., Shoemaker D. D., Adams M. W., Short J. M., Sorge J. A., Mathur E. J. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991 Dec 1;108(1):1–6. doi: 10.1016/0378-1119(91)90480-y. [DOI] [PubMed] [Google Scholar]
  23. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  24. Mizusawa S., Nishimura S., Seela F. Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res. 1986 Feb 11;14(3):1319–1324. doi: 10.1093/nar/14.3.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Myers T. W., Gelfand D. H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry. 1991 Aug 6;30(31):7661–7666. doi: 10.1021/bi00245a001. [DOI] [PubMed] [Google Scholar]
  26. Nakayama M., Ben-Mahrez K., Kohiyama M. DNA primase activity found in an alpha-like DNA polymerase obtained from Halobacterium halobium. Eur J Biochem. 1988 Aug 1;175(2):265–270. doi: 10.1111/j.1432-1033.1988.tb14192.x. [DOI] [PubMed] [Google Scholar]
  27. Nakayama M., Kohiyama M. An alpha-like DNA polymerase from Halobacterium halobium. Eur J Biochem. 1985 Oct 15;152(2):293–297. doi: 10.1111/j.1432-1033.1985.tb09197.x. [DOI] [PubMed] [Google Scholar]
  28. Orlando P., Carretta F., Grippo P., Cimino G., De Stefano S., Strazzullo G. Kelletinin I and kelletinin A from the marine mollusc Buccinulum corneum are inhibitors of eukaryotic DNA polymerase alpha. Experientia. 1991 Jan 15;47(1):64–66. doi: 10.1007/BF02041254. [DOI] [PubMed] [Google Scholar]
  29. Orlando P., Geremia R., Frusciante C., Grippo P. Replicating premeiotic germ cells of the mouse contain a novel DNA primase stimulatory factor. Cell Differ Dev. 1989 Jul;27(2):129–136. doi: 10.1016/0922-3371(89)90742-9. [DOI] [PubMed] [Google Scholar]
  30. Orlando P., Geremia R., Frusciante C., Tedeschi B., Grippo P. DNA repair synthesis in mouse spermatogenesis involves DNA polymerase beta activity. Cell Differ. 1988 Apr;23(3):221–230. doi: 10.1016/0045-6039(88)90075-9. [DOI] [PubMed] [Google Scholar]
  31. Orlando P., Strazzullo G., Carretta F., De Falco M., Grippo P. Inhibition mechanisms of HIV-1, Mo-MuLV and AMV reverse transcriptases by Kelletinin A from Buccinulum corneum. Experientia. 1996 Aug 15;52(8):812–817. doi: 10.1007/BF01923995. [DOI] [PubMed] [Google Scholar]
  32. Pisani F. M., De Martino C., Rossi M. A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family B DNA polymerases. Nucleic Acids Res. 1992 Jun 11;20(11):2711–2716. doi: 10.1093/nar/20.11.2711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  34. Salhi S., Elie C., Forterre P., de Recondo A. M., Rossignol J. M. DNA polymerase from Sulfolobus acidocaldarius. Replication at high temperature of long stretches of single-stranded DNA. J Mol Biol. 1989 Oct 20;209(4):635–644. [PubMed] [Google Scholar]
  35. Sellmann E., Schröder K. L., Knoblich I. M., Westermann P. Purification and characterization of DNA polymerases from Bacillus species. J Bacteriol. 1992 Jul;174(13):4350–4355. doi: 10.1128/jb.174.13.4350-4355.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tindall K. R., Kunkel T. A. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 1988 Aug 9;27(16):6008–6013. doi: 10.1021/bi00416a027. [DOI] [PubMed] [Google Scholar]
  37. Tse W. T., Forget B. G. Reverse transcription and direct amplification of cellular RNA transcripts by Taq polymerase. Gene. 1990 Apr 16;88(2):293–296. doi: 10.1016/0378-1119(90)90047-u. [DOI] [PubMed] [Google Scholar]
  38. Uemori T., Ishino Y., Toh H., Asada K., Kato I. Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res. 1993 Jan 25;21(2):259–265. doi: 10.1093/nar/21.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. de Rosa M., Gambacorta A., Bu'lock J. D. Ultrastructure of an extremely thermophilic acidophilic micro-organism. J Gen Microbiol. 1975 Jan;86(1):165–173. doi: 10.1099/00221287-86-1-165. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES