Abstract
Two DNA polymerase isoenzymes, called DpA and DpB on the basis of their elution order from DEAE cellulose, were purified to homogeneity from the thermo-acidophilic eubacterium Bacillus acidocaldarius. The enzymes are weakly acidophilic proteins constituted by a single subunit of 117 and 103 kDa respectively. DpA and DpB differ in thermostability, in thermophilicity, in sensitivity to assay conditions and in resistance to sulphydryl-group blocking agents such as N-ethylmaleimide and p-hydroxymercuriobenzoate. They differ also in synthetic template-primer utilization, in the apparent Km for dNTPs and in processivity. In particular, DpA utilizes more effic iently synthetic templates-primers such as poly(dA).poly(dT), poly(dT). (rA)12-18 and poly(rA).(dT)12-18 and presents a greater tendency to accept dNTP analogues modified in the sugar or in the base ring, such as cytosine beta-d-arabinofuranoside 5'-triphosphate, 2',3'-dideoxyribonucleosides 5'-triphosphate, butylphenyl-dGTP and digoxigenin-conjugated dUTP. In addition, DpA presents an exonuclease activity that preferentially hydrolyses DNA in the 5'-3' direction, whereas DpB lacks this activity. The possible biological role of the enzymes is discussed.
Full Text
The Full Text of this article is available as a PDF (469.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bambara R. A., Jessee C. B. Properties of DNA polymerases delta and epsilon, and their roles in eukaryotic DNA replication. Biochim Biophys Acta. 1991 Jan 17;1088(1):11–24. doi: 10.1016/0167-4781(91)90147-e. [DOI] [PubMed] [Google Scholar]
- Bambara R. A., Uyemura D., Choi T. On the processive mechanism of Escherichia coli DNA polymerase I. Quantitative assessment of processivity. J Biol Chem. 1978 Jan 25;253(2):413–423. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chien A., Edgar D. B., Trela J. M. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976 Sep;127(3):1550–1557. doi: 10.1128/jb.127.3.1550-1557.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Auria S., La Cara F., Nazzaro F., Vespa N., Rossi M. A thermophilic alcohol dehydrogenase from Bacillus acidocaldarius not reactive towards ketones. J Biochem. 1996 Sep;120(3):498–504. doi: 10.1093/oxfordjournals.jbchem.a021441. [DOI] [PubMed] [Google Scholar]
- Eckert K. A., Kunkel T. A. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. 1990 Jul 11;18(13):3739–3744. doi: 10.1093/nar/18.13.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elie C., De Recondo A. M., Forterre P. Thermostable DNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Purification, characterization and immunological properties. Eur J Biochem. 1989 Jan 2;178(3):619–626. doi: 10.1111/j.1432-1033.1989.tb14490.x. [DOI] [PubMed] [Google Scholar]
- Elie C., Salhi S., Rossignol J. M., Forterre P., De Recondo A. M. A DNA polymerase from a thermoacidophilic archaebacterium: evolutionary and technological interests. Biochim Biophys Acta. 1988 Dec 20;951(2-3):261–267. doi: 10.1016/0167-4781(88)90095-4. [DOI] [PubMed] [Google Scholar]
- Goodman M. F., Creighton S., Bloom L. B., Petruska J. Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol. 1993;28(2):83–126. doi: 10.3109/10409239309086792. [DOI] [PubMed] [Google Scholar]
- Grippo P., Locorotondo G., Caruso A. Characterization of the two major dna polymerase activities in oocytes and eggs of Xenopus laevis. FEBS Lett. 1975 Mar 1;51(1):137–142. doi: 10.1016/0014-5793(75)80871-4. [DOI] [PubMed] [Google Scholar]
- Görg A., Postel W., Westermeier R. Ultrathin-layer isoelectric focusing in polyacrylamide gels on cellophane. Anal Biochem. 1978 Aug 15;89(1):60–70. doi: 10.1016/0003-2697(78)90726-1. [DOI] [PubMed] [Google Scholar]
- Hamal A., Forterre P., Elie C. Purification and characterization of a DNA polymerase from the archaebacterium Thermoplasma acidophilum. Eur J Biochem. 1990 Jul 5;190(3):517–521. doi: 10.1111/j.1432-1033.1990.tb15604.x. [DOI] [PubMed] [Google Scholar]
- Innis M. A., Myambo K. B., Gelfand D. H., Brow M. A. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9436–9440. doi: 10.1073/pnas.85.24.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. doi: 10.1146/annurev.bi.63.070194.004021. [DOI] [PubMed] [Google Scholar]
- Kaledin A. S., Sliusarenko A. G., Gorodetskii S. I. Vydelenie i svoistva DNK-polimerazy iz ékstremal'no-termofil'noi bakterii Thermus flavus. Biokhimiia. 1981 Sep;46(9):1576–1584. [PubMed] [Google Scholar]
- Khan N. N., Wright G. E., Dudycz L. W., Brown N. C. Butylphenyl dGTP: a selective and potent inhibitor of mammalian DNA polymerase alpha. Nucleic Acids Res. 1984 Apr 25;12(8):3695–3706. doi: 10.1093/nar/12.8.3695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klimczak L. J., Grummt F., Burger K. J. Purification and characterization of DNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Nucleic Acids Res. 1985 Jul 25;13(14):5269–5282. doi: 10.1093/nar/13.14.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kong H., Kucera R. B., Jack W. E. Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J Biol Chem. 1993 Jan 25;268(3):1965–1975. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Loeb L. A., Tartof K. D., Travaglini E. C. Copying natural RNAs with E. coli DNA polymerase I. Nat New Biol. 1973 Mar 21;242(116):66–69. doi: 10.1038/newbio242066a0. [DOI] [PubMed] [Google Scholar]
- Lundberg K. S., Shoemaker D. D., Adams M. W., Short J. M., Sorge J. A., Mathur E. J. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991 Dec 1;108(1):1–6. doi: 10.1016/0378-1119(91)90480-y. [DOI] [PubMed] [Google Scholar]
- MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
- Mizusawa S., Nishimura S., Seela F. Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res. 1986 Feb 11;14(3):1319–1324. doi: 10.1093/nar/14.3.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers T. W., Gelfand D. H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry. 1991 Aug 6;30(31):7661–7666. doi: 10.1021/bi00245a001. [DOI] [PubMed] [Google Scholar]
- Nakayama M., Ben-Mahrez K., Kohiyama M. DNA primase activity found in an alpha-like DNA polymerase obtained from Halobacterium halobium. Eur J Biochem. 1988 Aug 1;175(2):265–270. doi: 10.1111/j.1432-1033.1988.tb14192.x. [DOI] [PubMed] [Google Scholar]
- Nakayama M., Kohiyama M. An alpha-like DNA polymerase from Halobacterium halobium. Eur J Biochem. 1985 Oct 15;152(2):293–297. doi: 10.1111/j.1432-1033.1985.tb09197.x. [DOI] [PubMed] [Google Scholar]
- Orlando P., Carretta F., Grippo P., Cimino G., De Stefano S., Strazzullo G. Kelletinin I and kelletinin A from the marine mollusc Buccinulum corneum are inhibitors of eukaryotic DNA polymerase alpha. Experientia. 1991 Jan 15;47(1):64–66. doi: 10.1007/BF02041254. [DOI] [PubMed] [Google Scholar]
- Orlando P., Geremia R., Frusciante C., Grippo P. Replicating premeiotic germ cells of the mouse contain a novel DNA primase stimulatory factor. Cell Differ Dev. 1989 Jul;27(2):129–136. doi: 10.1016/0922-3371(89)90742-9. [DOI] [PubMed] [Google Scholar]
- Orlando P., Geremia R., Frusciante C., Tedeschi B., Grippo P. DNA repair synthesis in mouse spermatogenesis involves DNA polymerase beta activity. Cell Differ. 1988 Apr;23(3):221–230. doi: 10.1016/0045-6039(88)90075-9. [DOI] [PubMed] [Google Scholar]
- Orlando P., Strazzullo G., Carretta F., De Falco M., Grippo P. Inhibition mechanisms of HIV-1, Mo-MuLV and AMV reverse transcriptases by Kelletinin A from Buccinulum corneum. Experientia. 1996 Aug 15;52(8):812–817. doi: 10.1007/BF01923995. [DOI] [PubMed] [Google Scholar]
- Pisani F. M., De Martino C., Rossi M. A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family B DNA polymerases. Nucleic Acids Res. 1992 Jun 11;20(11):2711–2716. doi: 10.1093/nar/20.11.2711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Salhi S., Elie C., Forterre P., de Recondo A. M., Rossignol J. M. DNA polymerase from Sulfolobus acidocaldarius. Replication at high temperature of long stretches of single-stranded DNA. J Mol Biol. 1989 Oct 20;209(4):635–644. [PubMed] [Google Scholar]
- Sellmann E., Schröder K. L., Knoblich I. M., Westermann P. Purification and characterization of DNA polymerases from Bacillus species. J Bacteriol. 1992 Jul;174(13):4350–4355. doi: 10.1128/jb.174.13.4350-4355.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tindall K. R., Kunkel T. A. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 1988 Aug 9;27(16):6008–6013. doi: 10.1021/bi00416a027. [DOI] [PubMed] [Google Scholar]
- Tse W. T., Forget B. G. Reverse transcription and direct amplification of cellular RNA transcripts by Taq polymerase. Gene. 1990 Apr 16;88(2):293–296. doi: 10.1016/0378-1119(90)90047-u. [DOI] [PubMed] [Google Scholar]
- Uemori T., Ishino Y., Toh H., Asada K., Kato I. Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res. 1993 Jan 25;21(2):259–265. doi: 10.1093/nar/21.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Rosa M., Gambacorta A., Bu'lock J. D. Ultrastructure of an extremely thermophilic acidophilic micro-organism. J Gen Microbiol. 1975 Jan;86(1):165–173. doi: 10.1099/00221287-86-1-165. [DOI] [PubMed] [Google Scholar]