Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jan 15;329(Pt 2):321–328. doi: 10.1042/bj3290321

Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past.

N T Price 1, V N Jackson 1, A P Halestrap 1
PMCID: PMC1219047  PMID: 9425115

Abstract

Measurement of monocarboxylate transport kinetics in a range of cell types has provided strong circumstantial evidence for a family of monocarboxylate transporters (MCTs). Two mammalian MCT isoforms (MCT1 and MCT2) and a chicken isoform (REMP or MCT3) have already been cloned, sequenced and expressed, and another MCT-like sequence (XPCT) has been identified. Here we report the identification of new human MCT homologues in the database of expression sequence tags and the cloning and sequencing of four new full-length MCT-like sequences from human cDNA libraries, which we have denoted MCT3, MCT4, MCT5 and MCT6. Northern blotting revealed a unique tissue distribution for the expression of mRNA for each of the seven putative MCT isoforms (MCT1-MCT6 and XPCT). All sequences were predicted to have 12 transmembrane (TM) helical domains with a large intracellular loop between TM6 and TM7. Multiple sequence alignments showed identities ranging from 20% to 55%, with the greatest conservation in the predicted TM regions and more variation in the C-terminal than the N-terminal region. Searching of additional sequence databases identified candidate MCT homologues from the yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans and the archaebacterium Sulfolobus solfataricus. Together these sequences constitute a new family of transporters with some strongly conserved sequence motifs, the possible functions of which are discussed.

Full Text

The Full Text of this article is available as a PDF (817.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandraki D., Tzermia M. Sequencing of a 13.2 kb segment next to the left telomere of yeast chromosome XI revealed five open reading frames and recent recombination events with the right arms of chromosomes III and V. Yeast. 1994 Apr;10 (Suppl A):S81–S91. doi: 10.1002/yea.320100011. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Arbuckle M. I., Kane S., Porter L. M., Seatter M. J., Gould G. W. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry. 1996 Dec 24;35(51):16519–16527. doi: 10.1021/bi962210n. [DOI] [PubMed] [Google Scholar]
  4. Boguski M. S., Tolstoshev C. M., Bassett D. E., Jr Gene discovery in dbEST. Science. 1994 Sep 30;265(5181):1993–1994. doi: 10.1126/science.8091218. [DOI] [PubMed] [Google Scholar]
  5. Carpenter L., Halestrap A. P. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J. 1994 Dec 15;304(Pt 3):751–760. doi: 10.1042/bj3040751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpenter L., Poole R. C., Halestrap A. P. Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettré tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function. Biochim Biophys Acta. 1996 Mar 13;1279(2):157–163. doi: 10.1016/0005-2736(95)00254-5. [DOI] [PubMed] [Google Scholar]
  7. Clayton R. A., White O., Ketchum K. A., Venter J. C. The first genome from the third domain of life. Nature. 1997 May 29;387(6632):459–462. doi: 10.1038/387459a0. [DOI] [PubMed] [Google Scholar]
  8. Dong J. M., Taylor J. S., Latour D. J., Iuchi S., Lin E. C. Three overlapping lct genes involved in L-lactate utilization by Escherichia coli. J Bacteriol. 1993 Oct;175(20):6671–6678. doi: 10.1128/jb.175.20.6671-6678.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  10. Fliegel L., Dyck J. R. Molecular biology of the cardiac sodium/hydrogen exchanger. Cardiovasc Res. 1995 Feb;29(2):155–159. [PubMed] [Google Scholar]
  11. Garcia C. K., Brown M. S., Pathak R. K., Goldstein J. L. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem. 1995 Jan 27;270(4):1843–1849. doi: 10.1074/jbc.270.4.1843. [DOI] [PubMed] [Google Scholar]
  12. Garcia C. K., Goldstein J. L., Pathak R. K., Anderson R. G., Brown M. S. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11;76(5):865–873. doi: 10.1016/0092-8674(94)90361-1. [DOI] [PubMed] [Google Scholar]
  13. Garcia C. K., Li X., Luna J., Francke U. cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2-p12. Genomics. 1994 Sep 15;23(2):500–503. doi: 10.1006/geno.1994.1532. [DOI] [PubMed] [Google Scholar]
  14. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Griffith J. K., Baker M. E., Rouch D. A., Page M. G., Skurray R. A., Paulsen I. T., Chater K. F., Baldwin S. A., Henderson P. J. Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol. 1992 Aug;4(4):684–695. doi: 10.1016/0955-0674(92)90090-y. [DOI] [PubMed] [Google Scholar]
  16. Hart K. W., Clarke A. R., Wigley D. B., Waldman A. D., Chia W. N., Barstow D. A., Atkinson T., Jones J. B., Holbrook J. J. A strong carboxylate-arginine interaction is important in substrate orientation and recognition in lactate dehydrogenase. Biochim Biophys Acta. 1987 Aug 21;914(3):294–298. doi: 10.1016/0167-4838(87)90289-5. [DOI] [PubMed] [Google Scholar]
  17. Hirayama B. A., Loo D. D., Wright E. M. Protons drive sugar transport through the Na+/glucose cotransporter (SGLT1). J Biol Chem. 1994 Aug 26;269(34):21407–21410. [PubMed] [Google Scholar]
  18. Jackson V. N., Halestrap A. P. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem. 1996 Jan 12;271(2):861–868. doi: 10.1074/jbc.271.2.861. [DOI] [PubMed] [Google Scholar]
  19. Jackson V. N., Price N. T., Carpenter L., Halestrap A. P. Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem J. 1997 Jun 1;324(Pt 2):447–453. doi: 10.1042/bj3240447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jackson V. N., Price N. T., Halestrap A. P. cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle. Biochim Biophys Acta. 1995 Sep 13;1238(2):193–196. doi: 10.1016/0005-2736(95)00160-5. [DOI] [PubMed] [Google Scholar]
  21. Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev. 1997 Apr;77(2):321–358. doi: 10.1152/physrev.1997.77.2.321. [DOI] [PubMed] [Google Scholar]
  22. Kim C. M., Goldstein J. L., Brown M. S. cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. J Biol Chem. 1992 Nov 15;267(32):23113–23121. [PubMed] [Google Scholar]
  23. Kozak M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol. 1989 Nov;9(11):5073–5080. doi: 10.1128/mcb.9.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  25. Lafrenière R. G., Carrel L., Willard H. F. A novel transmembrane transporter encoded by the XPCT gene in Xq13.2. Hum Mol Genet. 1994 Jul;3(7):1133–1139. doi: 10.1093/hmg/3.7.1133. [DOI] [PubMed] [Google Scholar]
  26. Landolt-Marticorena C., Reithmeier R. A. Asparagine-linked oligosaccharides are localized to single extracytosolic segments in multi-span membrane glycoproteins. Biochem J. 1994 Aug 15;302(Pt 1):253–260. doi: 10.1042/bj3020253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mallet L., Bussereau F., Jacquet M. A 43.5 kb segment of yeast chromosome XIV, which contains MFA2, MEP2, CAP/SRV2, NAM9, FKB1/FPR1/RBP1, MOM22 and CPT1, predicts an adenosine deaminase gene and 14 new open reading frames. Yeast. 1995 Sep 30;11(12):1195–1209. doi: 10.1002/yea.320111210. [DOI] [PubMed] [Google Scholar]
  28. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  29. Philp N., Chu P., Pan T. C., Zhang R. Z., Chu M. L., Stark K., Boettiger D., Yoon H., Kieber-Emmons T. Developmental expression and molecular cloning of REMP, a novel retinal epithelial membrane protein. Exp Cell Res. 1995 Jul;219(1):64–73. doi: 10.1006/excr.1995.1205. [DOI] [PubMed] [Google Scholar]
  30. Poole R. C., Halestrap A. P. Identification and partial purification of the erythrocyte L-lactate transporter. Biochem J. 1992 May 1;283(Pt 3):855–862. doi: 10.1042/bj2830855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Poole R. C., Halestrap A. P. Interaction of the erythrocyte lactate transporter (monocarboxylate transporter 1) with an integral 70-kDa membrane glycoprotein of the immunoglobulin superfamily. J Biol Chem. 1997 Jun 6;272(23):14624–14628. doi: 10.1074/jbc.272.23.14624. [DOI] [PubMed] [Google Scholar]
  32. Poole R. C., Halestrap A. P. N-terminal protein sequence analysis of the rabbit erythrocyte lactate transporter suggests identity with the cloned monocarboxylate transport protein MCT1. Biochem J. 1994 Nov 1;303(Pt 3):755–759. doi: 10.1042/bj3030755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Poole R. C., Halestrap A. P. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol. 1993 Apr;264(4 Pt 1):C761–C782. doi: 10.1152/ajpcell.1993.264.4.C761. [DOI] [PubMed] [Google Scholar]
  34. Poole R. C., Sansom C. E., Halestrap A. P. Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochem J. 1996 Dec 15;320(Pt 3):817–824. doi: 10.1042/bj3200817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rechsteiner M., Rogers S. W. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996 Jul;21(7):267–271. [PubMed] [Google Scholar]
  36. Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
  37. Saier M. H., Jr Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev. 1994 Mar;58(1):71–93. doi: 10.1128/mr.58.1.71-93.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schmid C. W. Alu: structure, origin, evolution, significance and function of one-tenth of human DNA. Prog Nucleic Acid Res Mol Biol. 1996;53:283–319. doi: 10.1016/s0079-6603(08)60148-8. [DOI] [PubMed] [Google Scholar]
  39. Sensen C. W., Klenk H. P., Singh R. K., Allard G., Chan C. C., Liu Q. Y., Penny S. L., Young F., Schenk M. E., Gaasterland T. Organizational characteristics and information content of an archaeal genome: 156 kb of sequence from Sulfolobus solfataricus P2. Mol Microbiol. 1996 Oct;22(1):175–191. doi: 10.1111/j.1365-2958.1996.tb02666.x. [DOI] [PubMed] [Google Scholar]
  40. Takanaga H., Tamai I., Inaba S., Sai Y., Higashida H., Yamamoto H., Tsuji A. cDNA cloning and functional characterization of rat intestinal monocarboxylate transporter. Biochem Biophys Res Commun. 1995 Dec 5;217(1):370–377. doi: 10.1006/bbrc.1995.2786. [DOI] [PubMed] [Google Scholar]
  41. Tanner M. J. Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol. 1993 Jan;30(1):34–57. [PubMed] [Google Scholar]
  42. Wang X., Levi A. J., Halestrap A. P. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi. Am J Physiol. 1994 Nov;267(5 Pt 2):H1759–H1769. doi: 10.1152/ajpheart.1994.267.5.H1759. [DOI] [PubMed] [Google Scholar]
  43. Wang X., Levi A. J., Halestrap A. P. Substrate and inhibitor specificities of the monocarboxylate transporters of single rat heart cells. Am J Physiol. 1996 Feb;270(2 Pt 2):H476–H484. doi: 10.1152/ajpheart.1996.270.2.H476. [DOI] [PubMed] [Google Scholar]
  44. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
  45. Wright E. M. Transport of carboxylic acids by renal membrane vesicles. Annu Rev Physiol. 1985;47:127–141. doi: 10.1146/annurev.ph.47.030185.001015. [DOI] [PubMed] [Google Scholar]
  46. Yamane K., Kumano M., Kurita K. The 25 degrees-36 degrees region of the Bacillus subtilis chromosome: determination of the sequence of a 146 kb segment and identification of 113 genes. Microbiology. 1996 Nov;142(Pt 11):3047–3056. doi: 10.1099/13500872-142-11-3047. [DOI] [PubMed] [Google Scholar]
  47. Yoon H., Fanelli A., Grollman E. F., Philp N. J. Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem Biophys Res Commun. 1997 May 8;234(1):90–94. doi: 10.1006/bbrc.1997.6588. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES