Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jan 15;329(Pt 2):369–372. doi: 10.1042/bj3290369

Inhibition of human cytosolic phospholipase A2 by human annexin V.

A G Buckland 1, D C Wilton 1
PMCID: PMC1219053  PMID: 9425121

Abstract

The ability of annexins, particularly annexin 1 (lipocortin 1), to inhibit phospholipase A2 (PLA2) is well known and a substrate depletion mechanism is now widely accepted as the explanation for most inhibitory studies. However, there are only a very limited number of reported studies involving annexins and the high-molecular-mass cytosolic PLA2 (cPLA2). In this study we have examined the effect of human recombinant annexin V, a potentially abundant cytosolic protein, on the ability of human recombinant cPLA2 to hydrolyse a variety of phospholipid substrates. The results show clearly that, under the conditions of our study, annexin V can inhibit cPLA2 activity by a mechanism of substrate depletion and that this inhibition is dependent on the nature of the phospholipids and the concentration of Ca2+ ions in the assay. The hydrolysis of 1-stearoyl 2-arachidonyl phosphatidylcholine by cPLA2 was not significantly affected by annexin V over a range of Ca2+ concentrations (1 microM-2.5 mM), a result that presumably reflects the zwitterionic nature of the phospholipid and the known inability of annexins to bind to such interfaces. In contrast, the hydrolysis of dioleoyl phosphatidylglycerol, which is an effective anionic phospholipid substrate for this enzyme, and more significantly that of 1-stearoyl 2-arachidonyl phosphatidic acid, were readily inhibited by annexin V, although these effects were Ca2+-dependent. The Ca2+ concentrations required for inhibition in the assay system in vitro are greater than those associated with Ca2+-stimulated events within the cell, suggesting that a role for annexin V in regulating cPLA2 activity might not involve a substrate depletion mechanism in vivo unless factors in addition to Ca2+ and phospholipids contribute to the binding of annexin V to cell membranes.

Full Text

The Full Text of this article is available as a PDF (344.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andree H. A., Reutelingsperger C. P., Hauptmann R., Hemker H. C., Hermens W. T., Willems G. M. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem. 1990 Mar 25;265(9):4923–4928. [PubMed] [Google Scholar]
  2. Clark J. D., Schievella A. R., Nalefski E. A., Lin L. L. Cytosolic phospholipase A2. J Lipid Mediat Cell Signal. 1995 Oct;12(2-3):83–117. doi: 10.1016/0929-7855(95)00012-f. [DOI] [PubMed] [Google Scholar]
  3. Creaney A., Masters D. J., Needham M. B., Gordon R. D., Mott R., Wilton D. C. The properties of a cloned human high-molecular-mass cytosolic phospholipase A2 investigated using a continuous fluorescence displacement assay: evidence for enzyme clustering on phospholipid vesicles. Biochem J. 1995 Mar 15;306(Pt 3):857–864. doi: 10.1042/bj3060857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis A. J., Butt J. T., Walker J. H., Moss S. E., Gawler D. J. The Ca2+-dependent lipid binding domain of P120GAP mediates protein-protein interactions with Ca2+-dependent membrane-binding proteins. Evidence for a direct interaction between annexin VI and P120GAP. J Biol Chem. 1996 Oct 4;271(40):24333–24336. doi: 10.1074/jbc.271.40.24333. [DOI] [PubMed] [Google Scholar]
  5. Flower R. J., Blackwell G. J. Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation. Nature. 1979 Mar 29;278(5703):456–459. doi: 10.1038/278456a0. [DOI] [PubMed] [Google Scholar]
  6. Ghomashchi F., Schüttel S., Jain M. K., Gelb M. H. Kinetic analysis of a high molecular weight phospholipase A2 from rat kidney: divalent metal-dependent trapping of enzyme on product-containing vesicles. Biochemistry. 1992 Apr 21;31(15):3814–3824. doi: 10.1021/bi00130a012. [DOI] [PubMed] [Google Scholar]
  7. Glover S., de Carvalho M. S., Bayburt T., Jonas M., Chi E., Leslie C. C., Gelb M. H. Translocation of the 85-kDa phospholipase A2 from cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IgE/antigen. J Biol Chem. 1995 Jun 23;270(25):15359–15367. doi: 10.1074/jbc.270.25.15359. [DOI] [PubMed] [Google Scholar]
  8. Goossens E. L., Reutelingsperger C. P., Jongsma F. H., Kraayenhof R., Hermens W. T. Annexin V perturbs or stabilises phospholipid membranes in a calcium-dependent manner. FEBS Lett. 1995 Feb 13;359(2-3):155–158. doi: 10.1016/0014-5793(95)00032-5. [DOI] [PubMed] [Google Scholar]
  9. Hirata F., Schiffmann E., Venkatasubramanian K., Salomon D., Axelrod J. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci U S A. 1980 May;77(5):2533–2536. doi: 10.1073/pnas.77.5.2533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huber R., Berendes R., Burger A., Schneider M., Karshikov A., Luecke H., Römisch J., Paques E. Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J Mol Biol. 1992 Feb 5;223(3):683–704. doi: 10.1016/0022-2836(92)90984-r. [DOI] [PubMed] [Google Scholar]
  11. Kim K. M., Kim D. K., Park Y. M., Kim C. K., Na D. S. Annexin-I inhibits phospholipase A2 by specific interaction, not by substrate depletion. FEBS Lett. 1994 May 2;343(3):251–255. doi: 10.1016/0014-5793(94)80566-0. [DOI] [PubMed] [Google Scholar]
  12. Leslie C. C., Channon J. Y. Anionic phospholipids stimulate an arachidonoyl-hydrolyzing phospholipase A2 from macrophages and reduce the calcium requirement for activity. Biochim Biophys Acta. 1990 Aug 6;1045(3):261–270. doi: 10.1016/0005-2760(90)90129-l. [DOI] [PubMed] [Google Scholar]
  13. Leslie C. C. Properties and regulation of cytosolic phospholipase A2. J Biol Chem. 1997 Jul 4;272(27):16709–16712. doi: 10.1074/jbc.272.27.16709. [DOI] [PubMed] [Google Scholar]
  14. Marshall L. A., McCarte-Roshak A. Demonstration of similar calcium dependencies by mammalian high and low molecular mass phospholipase A2. Biochem Pharmacol. 1992 Nov 3;44(9):1849–1858. doi: 10.1016/0006-2952(92)90081-s. [DOI] [PubMed] [Google Scholar]
  15. Meers P., Daleke D., Hong K., Papahadjopoulos D. Interactions of annexins with membrane phospholipids. Biochemistry. 1991 Mar 19;30(11):2903–2908. doi: 10.1021/bi00225a025. [DOI] [PubMed] [Google Scholar]
  16. Meers P., Mealy T. Calcium-dependent annexin V binding to phospholipids: stoichiometry, specificity, and the role of negative charge. Biochemistry. 1993 Nov 2;32(43):11711–11721. doi: 10.1021/bi00094a030. [DOI] [PubMed] [Google Scholar]
  17. Meers P., Mealy T. Relationship between annexin V tryptophan exposure, calcium, and phospholipid binding. Biochemistry. 1993 May 25;32(20):5411–5418. doi: 10.1021/bi00071a016. [DOI] [PubMed] [Google Scholar]
  18. Mira J. P., Dubois T., Oudinet J. P., Lukowski S., Russo-Marie F., Geny B. Inhibition of cytosolic phospholipase A2 by annexin V in differentiated permeabilized HL-60 cells. Evidence of crucial importance of domain I type II Ca2+-binding site in the mechanism of inhibition. J Biol Chem. 1997 Apr 18;272(16):10474–10482. doi: 10.1074/jbc.272.16.10474. [DOI] [PubMed] [Google Scholar]
  19. Peters-Golden M., Song K., Marshall T., Brock T. Translocation of cytosolic phospholipase A2 to the nuclear envelope elicits topographically localized phospholipid hydrolysis. Biochem J. 1996 Sep 15;318(Pt 3):797–803. doi: 10.1042/bj3180797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pigault C., Follenius-Wund A., Schmutz M., Freyssinet J. M., Brisson A. Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J Mol Biol. 1994 Feb 11;236(1):199–208. doi: 10.1006/jmbi.1994.1129. [DOI] [PubMed] [Google Scholar]
  21. Ravanat C., Torbet J., Freyssinet J. M. A neutron solution scattering study of the structure of annexin-V and its binding to lipid vesicles. J Mol Biol. 1992 Aug 20;226(4):1271–1278. doi: 10.1016/0022-2836(92)91066-x. [DOI] [PubMed] [Google Scholar]
  22. Raynal P., Kuijpers G., Rojas E., Pollard H. B. A rise in nuclear calcium translocates annexins IV and V to the nuclear envelope. FEBS Lett. 1996 Sep 2;392(3):263–268. doi: 10.1016/0014-5793(96)00827-7. [DOI] [PubMed] [Google Scholar]
  23. Schievella A. R., Regier M. K., Smith W. L., Lin L. L. Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem. 1995 Dec 22;270(51):30749–30754. doi: 10.1074/jbc.270.51.30749. [DOI] [PubMed] [Google Scholar]
  24. Schlaepfer D. D., Haigler H. T. Expression of annexins as a function of cellular growth state. J Cell Biol. 1990 Jul;111(1):229–238. doi: 10.1083/jcb.111.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schlaepfer D. D., Jones J., Haigler H. T. Inhibition of protein kinase C by annexin V. Biochemistry. 1992 Feb 18;31(6):1886–1891. doi: 10.1021/bi00121a043. [DOI] [PubMed] [Google Scholar]
  26. Swairjo M. A., Concha N. O., Kaetzel M. A., Dedman J. R., Seaton B. A. Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat Struct Biol. 1995 Nov;2(11):968–974. doi: 10.1038/nsb1195-968. [DOI] [PubMed] [Google Scholar]
  27. Trotter P. J., Orchard M. A., Walker J. H. Ca2+ concentration during binding determines the manner in which annexin V binds to membranes. Biochem J. 1995 Jun 1;308(Pt 2):591–598. doi: 10.1042/bj3080591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilton D. C. A continuous fluorescence displacement assay for the measurement of phospholipase A2 and other lipases that release long-chain fatty acids. Biochem J. 1990 Mar 1;266(2):435–439. doi: 10.1042/bj2660435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Worrall A. F., Evans C., Wilton D. C. Synthesis of a gene for rat liver fatty-acid-binding protein and its expression in Escherichia coli. Biochem J. 1991 Sep 1;278(Pt 2):365–368. doi: 10.1042/bj2780365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES