Abstract
We have investigated, by RNase protection assays in rat brain regions and primary cortical astrocyte cultures, the presence of the mRNA species encoding the three mitochondrially located enzymes acetoacetyl-CoA thiolase, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mt. HMG-CoA synthase) and HMG-CoA lyase (HMG-CoA lyase) that together constitute the ketogenic HMG-CoA cycle. As a prerequisite we obtained a full-length cDNA encoding rat HMG-CoA lyase by degenerate oligonucleotide-primed PCR coupled to a modification of PCR-rapid amplification of cDNA ends (PCR-RACE). We report here: (1) the nucleotide sequence of rat mt. HMG-CoA lyase, (2) detection of the mRNA species encoding all three HMG-CoA cycle enzymes in all regions of rat brain during suckling, (3) approximately twice the abundance of mt. HMG-CoA synthase mRNA in cerebellum than in cortex in 11-day-old suckling rat pups, (4) significantly lower abundances of mt. HMG-CoA synthase mRNA in brain regions derived from rats weaned to a high-carbohydrate/low-fat diet compared with the corresponding regions derived from the suckling rat, and (5) the presence of mt. HMG-CoA synthase mRNA in primary cultures of neonatal cortical astrocytes at an abundance similar to that found in liver of weaned animals. These results provide preliminary evidence that certain neural cell types possess ketogenic potential and might thus have a direct role in the provision of fatty acid-derived ketone bodies during the suckling period.
Full Text
The Full Text of this article is available as a PDF (624.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson G. J., Connor W. E. Uptake of fatty acids by the developing rat brain. Lipids. 1988 Apr;23(4):286–290. doi: 10.1007/BF02537334. [DOI] [PubMed] [Google Scholar]
- Auestad N., Korsak R. A., Morrow J. W., Edmond J. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem. 1991 Apr;56(4):1376–1386. doi: 10.1111/j.1471-4159.1991.tb11435.x. [DOI] [PubMed] [Google Scholar]
- Ayté J., Gil-Gómez G., Hegardt F. G. Nucleotide sequence of a rat liver cDNA encoding the cytosolic 3-hydroxy-3-methylglutaryl coenzyme A synthase. Nucleic Acids Res. 1990 Jun 25;18(12):3642–3642. doi: 10.1093/nar/18.12.3642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BACHHAWAT B. K., ROBINSON W. G., COON M. J. The enzymatic cleavage of beta-hydroxy-beta-methylglutaryl coenzyme A to acetoacetate and acetyl coenzyme A. J Biol Chem. 1955 Oct;216(2):727–736. [PubMed] [Google Scholar]
- Bergseth S., Christiansen E. N., Bremer J. The effect of feeding fish oils, vegetable oils and clofibrate on the ketogenesis from long chain fatty acids in hepatocytes. Lipids. 1986 Aug;21(8):508–514. doi: 10.1007/BF02535638. [DOI] [PubMed] [Google Scholar]
- Birnstiel M. L., Busslinger M., Strub K. Transcription termination and 3' processing: the end is in site! Cell. 1985 Jun;41(2):349–359. doi: 10.1016/s0092-8674(85)80007-6. [DOI] [PubMed] [Google Scholar]
- Booth R. F., Patel T. B., Clark J. B. The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. J Neurochem. 1980 Jan;34(1):17–25. doi: 10.1111/j.1471-4159.1980.tb04616.x. [DOI] [PubMed] [Google Scholar]
- Braissant O., Foufelle F., Scotto C., Dauça M., Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996 Jan;137(1):354–366. doi: 10.1210/endo.137.1.8536636. [DOI] [PubMed] [Google Scholar]
- Casals N., Roca N., Guerrero M., Gil-Gómez G., Ayté J., Ciudad C. J., Hegardt F. G. Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis. Biochem J. 1992 Apr 1;283(Pt 1):261–264. doi: 10.1042/bj2830261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cullingford T. E., Clark J. B., Phillips I. R. The pyruvate dehydrogenase complex: cloning of the rat somatic E1 alpha subunit and its coordinate expression with the mRNAs for the E1 beta, E2, and E3 catalytic subunits in developing rat brain. J Neurochem. 1994 May;62(5):1682–1690. doi: 10.1046/j.1471-4159.1994.62051682.x. [DOI] [PubMed] [Google Scholar]
- Decsi T., Koletzko B. Polyunsaturated fatty acids in infant nutrition. Acta Paediatr Suppl. 1994 Apr;83(395):31–37. doi: 10.1111/j.1651-2227.1994.tb13226.x. [DOI] [PubMed] [Google Scholar]
- Dolphin C. T., Cullingford T. E., Shephard E. A., Smith R. L., Phillips I. R. Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FM04. Eur J Biochem. 1996 Feb 1;235(3):683–689. doi: 10.1111/j.1432-1033.1996.00683.x. [DOI] [PubMed] [Google Scholar]
- Errington J. A rapid and reliable one-step method for isolating DNA fragments from agarose gels. Nucleic Acids Res. 1990 Sep 11;18(17):5324–5324. doi: 10.1093/nar/18.17.5324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farquharson J., Cockburn F., Patrick W. A., Jamieson E. C., Logan R. W. Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet. 1992 Oct 3;340(8823):810–813. doi: 10.1016/0140-6736(92)92684-8. [DOI] [PubMed] [Google Scholar]
- Forman B. M., Chen J., Evans R. M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4312–4317. doi: 10.1073/pnas.94.9.4312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukao T., Kamijo K., Osumi T., Fujiki Y., Yamaguchi S., Orii T., Hashimoto T. Molecular cloning and nucleotide sequence of cDNA encoding the entire precursor of rat mitochondrial acetoacetyl-CoA thiolase. J Biochem. 1989 Aug;106(2):197–204. doi: 10.1093/oxfordjournals.jbchem.a122832. [DOI] [PubMed] [Google Scholar]
- Girard J., Ferré P., Pégorier J. P., Duée P. H. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992 Apr;72(2):507–562. doi: 10.1152/physrev.1992.72.2.507. [DOI] [PubMed] [Google Scholar]
- Kainu T., Wikström A. C., Gustafsson J. A., Pelto-Huikko M. Localization of the peroxisome proliferator-activated receptor in the brain. Neuroreport. 1994 Dec 20;5(18):2481–2485. doi: 10.1097/00001756-199412000-00019. [DOI] [PubMed] [Google Scholar]
- Kliewer S. A., Sundseth S. S., Jones S. A., Brown P. J., Wisely G. B., Koble C. S., Devchand P., Wahli W., Willson T. M., Lenhard J. M. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4318–4323. doi: 10.1073/pnas.94.9.4318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. Y., Rasheed S. A simple procedure for maximum yield of high-quality plasmid DNA. Biotechniques. 1990 Dec;9(6):676–679. [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
- Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mironov V. N., Van Montagu M., Inzé D. High throughput RNase protection assay. Nucleic Acids Res. 1995 Aug 25;23(16):3359–3360. doi: 10.1093/nar/23.16.3359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell G. A., Robert M. F., Hruz P. W., Wang S., Fontaine G., Behnke C. E., Mende-Mueller L. M., Schappert K., Lee C., Gibson K. M. 3-Hydroxy-3-methylglutaryl coenzyme A lyase (HL). Cloning of human and chicken liver HL cDNAs and characterization of a mutation causing human HL deficiency. J Biol Chem. 1993 Feb 25;268(6):4376–4381. [PubMed] [Google Scholar]
- Nehlig A., Pereira de Vasconcelos A. Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol. 1993 Feb;40(2):163–221. doi: 10.1016/0301-0082(93)90022-k. [DOI] [PubMed] [Google Scholar]
- Noble M., Murray K. Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. EMBO J. 1984 Oct;3(10):2243–2247. doi: 10.1002/j.1460-2075.1984.tb02122.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel T. B., Clark J. B. Acetoacetate metabolism in rat brain. Development of acetoacetyl-coenzyme A deacylase and 3-hydroxy-3-methylglutaryl-coenzyme A synthase. Biochem J. 1978 Dec 15;176(3):951–958. doi: 10.1042/bj1760951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peuchen S., Clark J. B., Duchen M. R. Mechanisms of intracellular calcium regulation in adult astrocytes. Neuroscience. 1996 Apr;71(3):871–883. doi: 10.1016/0306-4522(95)00515-3. [DOI] [PubMed] [Google Scholar]
- Pfanner N., Neupert W. The mitochondrial protein import apparatus. Annu Rev Biochem. 1990;59:331–353. doi: 10.1146/annurev.bi.59.070190.001555. [DOI] [PubMed] [Google Scholar]
- Quant P. A., Robin D., Robin P., Ferre P., Brand M. D., Girard J. Control of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the foetal/neonatal transition, suckling and weaning in the rat. Eur J Biochem. 1991 Jan 30;195(2):449–454. doi: 10.1111/j.1432-1033.1991.tb15724.x. [DOI] [PubMed] [Google Scholar]
- Rodríguez J. C., Gil-Gómez G., Hegardt F. G., Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J Biol Chem. 1994 Jul 22;269(29):18767–18772. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serra D., Asins G., Hegardt F. G. Ketogenic mitochondrial 3-hydroxy 3-methylglutaryl-CoA synthase gene expression in intestine and liver of suckling rats. Arch Biochem Biophys. 1993 Mar;301(2):445–448. doi: 10.1006/abbi.1993.1169. [DOI] [PubMed] [Google Scholar]
- Serra D., Bellido D., Asins G., Arias G., Vilaró S., Hegardt F. G. The expression of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme-A synthase in neonatal rat intestine and liver is under transcriptional control. Eur J Biochem. 1996 Apr 1;237(1):16–24. doi: 10.1111/j.1432-1033.1996.0016n.x. [DOI] [PubMed] [Google Scholar]
- Serra D., Fillat C., Matas R., Bosch F., Hegardt F. G. Tissue-specific expression and dietary regulation of chimeric mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase/human growth hormone gene in transgenic mice. J Biol Chem. 1996 Mar 29;271(13):7529–7534. doi: 10.1074/jbc.271.13.7529. [DOI] [PubMed] [Google Scholar]
- Shah S. N. Cytosolic 3-hydroxy-3-methyl glutaryl coenzyme a synthase in rat brain: properties and developmental change. Neurochem Res. 1982 Nov;7(11):1359–1366. doi: 10.1007/BF00966064. [DOI] [PubMed] [Google Scholar]
- Takakubo F., Dahl H. H. Analysis of pyruvate dehydrogenase expression in embryonic mouse brain: localization and developmental regulation. Brain Res Dev Brain Res. 1994 Jan 14;77(1):63–76. doi: 10.1016/0165-3806(94)90214-3. [DOI] [PubMed] [Google Scholar]
- Thumelin S., Forestier M., Girard J., Pegorier J. P. Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney. Biochem J. 1993 Jun 1;292(Pt 2):493–496. doi: 10.1042/bj2920493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valera A., Pelegrin M., Asins G., Fillat C., Sabater J., Pujol A., Hegardt F. G., Bosch F. Overexpression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in transgenic mice causes hepatic hyperketogenesis. J Biol Chem. 1994 Mar 4;269(9):6267–6270. [PubMed] [Google Scholar]
- Wang S., Nadeau J. H., Duncan A., Robert M. F., Fontaine G., Schappert K., Johnson K. R., Zietkiewicz E., Hruz P., Miziorko H. 3-Hydroxy-3-methylglutaryl coenzyme A lyase (HL): cloning and characterization of a mouse liver HL cDNA and subchromosomal mapping of the human and mouse HL genes. Mamm Genome. 1993;4(7):382–387. doi: 10.1007/BF00360589. [DOI] [PubMed] [Google Scholar]
- Yeh Y. Y., Gehman M. F., Yeh S. M. Maternal dietary fish oil enriches docosahexaenoate levels in brain subcellular fractions of offspring. J Neurosci Res. 1993 Jun 1;35(2):218–226. doi: 10.1002/jnr.490350213. [DOI] [PubMed] [Google Scholar]