Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 1;329(Pt 3):433–448. doi: 10.1042/bj3290433

Mitochondrial ribosomal proteins (MRPs) of yeast.

H R Graack 1, B Wittmann-Liebold 1
PMCID: PMC1219062  PMID: 9445368

Abstract

Mitochondrial ribosomal proteins (MRPs) are the counterparts in that organelle of the cytoplasmic ribosomal proteins in the host. Although the MRPs fulfil similar functions in protein biosynthesis, they are distinct in number, features and primary structures from the latter. Most progress in the eludication of the properties of individual MRPs, and in the characterization of the corresponding genes, has been made in baker's yeast (Saccharomyces cerevisiae). To date, 50 different MRPs have been determined, although biochemical data and mutational analysis propose a total number which is substantially higher. Surprisingly, only a minority of the MRPs that have been characterized show significant sequence similarities to known ribosomal proteins from other sources, thus limiting the deduction of their functions by simple comparison of amino acid sequences. Further, individual MRPs have been characterized functionally by mutational studies, and the regulation of expression of MRP genes has been described. The interaction of the mitochondrial ribosomes with transcription factors specific for individual mitochondrial mRNAs, and the communication between mitochondria and the nucleus for the co-ordinated expression of ribosomal constituents, are other aspects of current MRP research. Although the mitochondrial translational system is still far from being described completely, the yeast MRP system serves as a model for other organisms, including that of humans.

Full Text

The Full Text of this article is available as a PDF (686.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainley W. M., Macreadie I. G., Butow R. A. var1 Gene on the mitochondrial genome of Torulopsis glabrata. J Mol Biol. 1985 Aug 20;184(4):565–576. doi: 10.1016/0022-2836(85)90303-1. [DOI] [PubMed] [Google Scholar]
  2. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  3. Bergmann U., Wittmann-Liebold B. Identification of cross-linked amino acids in the protein pair HmaL23-HmaL29 from the 50S ribosomal subunit of the archaebacterium Haloarcula marismortui. Biochemistry. 1993 Mar 23;32(11):2880–2887. doi: 10.1021/bi00062a020. [DOI] [PubMed] [Google Scholar]
  4. Biteau N., Fremaux C., Hebrard S., Menara A., Aigle M., Crouzet M. The complete sequence of a 10.8kb fragment to the right of the chromosome III centromere of Saccharomyces cerevisiae. Yeast. 1992 Jan;8(1):61–70. doi: 10.1002/yea.320080107. [DOI] [PubMed] [Google Scholar]
  5. Boguta M., Dmochowska A., Borsuk P., Wrobel K., Gargouri A., Lazowska J., Slonimski P. P., Szczesniak B., Kruszewska A. NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes. Mol Cell Biol. 1992 Jan;12(1):402–412. doi: 10.1128/mcb.12.1.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Branda S. S., Isaya G. Prediction and identification of new natural substrates of the yeast mitochondrial intermediate peptidase. J Biol Chem. 1995 Nov 10;270(45):27366–27373. doi: 10.1074/jbc.270.45.27366. [DOI] [PubMed] [Google Scholar]
  7. Brennicke A., Grohmann L., Hiesel R., Knoop V., Schuster W. The mitochondrial genome on its way to the nucleus: different stages of gene transfer in higher plants. FEBS Lett. 1993 Jun 28;325(1-2):140–145. doi: 10.1016/0014-5793(93)81430-8. [DOI] [PubMed] [Google Scholar]
  8. Butow R. A., Perlman P. S., Grossman L. I. The unusual varl gene of yeast mitochondrial DNA. Science. 1985 Jun 28;228(4707):1496–1501. doi: 10.1126/science.2990030. [DOI] [PubMed] [Google Scholar]
  9. Cahill A., Baio D. L., Cunningham C. C. Isolation and characterization of rat liver mitochondrial ribosomes. Anal Biochem. 1995 Nov 20;232(1):47–55. doi: 10.1006/abio.1995.9962. [DOI] [PubMed] [Google Scholar]
  10. Costanzo M. C., Fox T. D. Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet. 1990;24:91–113. doi: 10.1146/annurev.ge.24.120190.000515. [DOI] [PubMed] [Google Scholar]
  11. Dabbs E. R., Hasenbank R., Kastner B., Rak K. H., Wartusch B., Stöffler G. Immunological studies of Escherichia coli mutants lacking one or two ribosomal proteins. Mol Gen Genet. 1983;192(3):301–308. doi: 10.1007/BF00392166. [DOI] [PubMed] [Google Scholar]
  12. Dang H., Ellis S. R. Structural and functional analyses of a yeast mitochondrial ribosomal protein homologous to ribosomal protein S15 of Escherichia coli. Nucleic Acids Res. 1990 Dec 11;18(23):6895–6901. doi: 10.1093/nar/18.23.6895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dang H., Franklin G., Darlak K., Spatola A. F., Ellis S. R. Discoordinate expression of the yeast mitochondrial ribosomal protein MRP1. J Biol Chem. 1990 May 5;265(13):7449–7454. [PubMed] [Google Scholar]
  14. Davis S. C., Ellis S. R. Incorporation of the yeast mitochondrial ribosomal protein Mrp2 into ribosomal subunits requires the mitochondrially encoded Var1 protein. Mol Gen Genet. 1995 May 10;247(3):379–386. doi: 10.1007/BF00293206. [DOI] [PubMed] [Google Scholar]
  15. Davis S. C., Tzagoloff A., Ellis S. R. Characterization of a yeast mitochondrial ribosomal protein structurally related to the mammalian 68-kDa high affinity laminin receptor. J Biol Chem. 1992 Mar 15;267(8):5508–5514. [PubMed] [Google Scholar]
  16. Dekker P. J., Papadopoulou B., Grivell L. A. In-vitro translation of mitochondrial mRNAs by yeast mitochondrial ribosomes is hampered by the lack of start-codon recognition. Curr Genet. 1993 Jan;23(1):22–27. doi: 10.1007/BF00336745. [DOI] [PubMed] [Google Scholar]
  17. Dequard-Chablat M., Sellem C. H. The S12 ribosomal protein of Podospora anserina belongs to the S19 bacterial family and controls the mitochondrial genome integrity through cytoplasmic translation. J Biol Chem. 1994 May 27;269(21):14951–14956. [PubMed] [Google Scholar]
  18. Dmochowska A., Konopińska A., Krzymowska M., Szcześniak B., Boguta M. The NAM9-1 suppressor mutation in a nuclear gene encoding ribosomal mitochondrial protein of Saccharomyces cerevisiae. Gene. 1995 Aug 30;162(1):81–85. doi: 10.1016/0378-1119(95)00311-s. [DOI] [PubMed] [Google Scholar]
  19. Drissi R., Sor F., Nosek J., Fukuhara H. Genes of the linear mitochondrial DNA of Williopsis mrakii: coding sequences for a maturase-like protein, a ribosomal protein VAR1 homologue, cytochrome oxidase subunit 2 and methionyl tRNA. Yeast. 1994 Mar;10(3):391–398. doi: 10.1002/yea.320100312. [DOI] [PubMed] [Google Scholar]
  20. Eki T., Naitou M., Hagiwara H., Ozawa M., Sasanuma S. I., Sasanuma M., Tsuchiya Y., Shibata T., Hanaoka F., Murakami Y. Analysis of a 36.2 kb DNA sequence including the right telomere of chromosome VI from Saccharomyces cerevisiae. Yeast. 1996 Feb;12(2):149–167. doi: 10.1002/(SICI)1097-0061(199602)12:2%3C149::AID-YEA893%3E3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  21. Faye G., Sor F. Analysis of mitochondrial ribosomal proteins of Saccharomyces cerevisiae by two dimensional polyacrylamide gel electrophoresis. Mol Gen Genet. 1977 Sep 21;155(1):27–34. doi: 10.1007/BF00268557. [DOI] [PubMed] [Google Scholar]
  22. Fearon K., Mason T. L. Structure and function of MRP20 and MRP49, the nuclear genes for two proteins of the 54 S subunit of the yeast mitochondrial ribosome. J Biol Chem. 1992 Mar 15;267(8):5162–5170. [PubMed] [Google Scholar]
  23. Fearon K., Mason T. L. Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MRP7, a protein of the large subunit of the mitochondrial ribosome. Mol Cell Biol. 1988 Sep;8(9):3636–3646. doi: 10.1128/mcb.8.9.3636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Folley L. S., Fox T. D. Reduced dosage of genes encoding ribosomal protein S18 suppresses a mitochondrial initiation codon mutation in Saccharomyces cerevisiae. Genetics. 1994 Jun;137(2):369–379. doi: 10.1093/genetics/137.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. García-Cantalejo J., Baladrón V., Esteban P. F., Santos M. A., Bou G., Remacha M. A., Revuelta J. L., Ballesta J. P., Jiménez A., del Rey F. The complete sequence of an 18,002 bp segment of Saccharomyces cerevisiae chromosome XI contains the HBS1, MRP-L20 and PRP16 genes, and six new open reading frames. Yeast. 1994 Feb;10(2):231–245. doi: 10.1002/yea.320100210. [DOI] [PubMed] [Google Scholar]
  26. Graack H. R., Grohmann L., Choli T. Mitochondrial ribosomes of yeast: isolation of individual proteins and N-terminal sequencing. FEBS Lett. 1988 Dec 19;242(1):4–8. doi: 10.1016/0014-5793(88)80975-x. [DOI] [PubMed] [Google Scholar]
  27. Graack H. R., Grohmann L., Kitakawa M., Goldschmidt-Reisin S. Gene MRP-L4, encoding mitochondrial ribosomal protein YmL4, is indispensable for proper non-respiratory cell functions in yeast. Gene. 1995 Jan 11;152(1):107–112. doi: 10.1016/0378-1119(94)00633-4. [DOI] [PubMed] [Google Scholar]
  28. Graack H. R., Grohmann L., Kitakawa M., Schäfer K. L., Kruft V. YmL9, a nucleus-encoded mitochondrial ribosomal protein of yeast, is homologous to L3 ribosomal proteins from all natural kingdoms and photosynthetic organelles. Eur J Biochem. 1992 Jun 1;206(2):373–380. doi: 10.1111/j.1432-1033.1992.tb16937.x. [DOI] [PubMed] [Google Scholar]
  29. Graack H. R., Grohmann L., Kitakawa M. The nuclear coded mitoribosomal proteins YmL27 and YmL31 are both essential for mitochondrial function in yeast. Biochimie. 1991 Jun;73(6):837–844. doi: 10.1016/0300-9084(91)90063-7. [DOI] [PubMed] [Google Scholar]
  30. Grivell L. A. Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. Eur J Biochem. 1989 Jul 1;182(3):477–493. doi: 10.1111/j.1432-1033.1989.tb14854.x. [DOI] [PubMed] [Google Scholar]
  31. Grohmann L., Graack H. R., Kitakawa M. Molecular cloning of the nuclear gene for mitochondrial ribosomal protein YmL31 from Saccharomyces cerevisiae. Eur J Biochem. 1989 Jul 15;183(1):155–160. doi: 10.1111/j.1432-1033.1989.tb14907.x. [DOI] [PubMed] [Google Scholar]
  32. Grohmann L., Graack H. R., Kruft V., Choli T., Goldschmidt-Reisin S., Kitakawa M. Extended N-terminal sequencing of proteins of the large ribosomal subunit from yeast mitochondria. FEBS Lett. 1991 Jun 17;284(1):51–56. doi: 10.1016/0014-5793(91)80759-v. [DOI] [PubMed] [Google Scholar]
  33. Grohmann L., Kitakawa M., Isono K., Goldschmidt-Reisin S., Graack H. R. The yeast nuclear gene MRP-L13 codes for a protein of the large subunit of the mitochondrial ribosome. Curr Genet. 1994 Jul;26(1):8–14. doi: 10.1007/BF00326298. [DOI] [PubMed] [Google Scholar]
  34. Groot G. S., Mason T. L., Van Harten-Loosbroek N. Var1 is associated with the small ribosomal subunit of mitochondrial ribosomes in yeast. Mol Gen Genet. 1979 Jul 24;174(3):339–342. doi: 10.1007/BF00267808. [DOI] [PubMed] [Google Scholar]
  35. Haffter P., Fox T. D. Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes, MRP17 and PET127. Mol Gen Genet. 1992 Oct;235(1):64–73. doi: 10.1007/BF00286182. [DOI] [PubMed] [Google Scholar]
  36. Haffter P., McMullin T. W., Fox T. D. A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics. 1990 Jul;125(3):495–503. doi: 10.1093/genetics/125.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Haffter P., McMullin T. W., Fox T. D. Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activator. Genetics. 1991 Feb;127(2):319–326. doi: 10.1093/genetics/127.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Harrer R., Schwank S., Schüller H. J., Schweizer E. Molecular cloning and analysis of the nuclear gene MRP-L6 coding for a putative mitochondrial ribosomal protein from Saccharomyces cerevisiae. Curr Genet. 1993 Jul-Aug;24(1-2):136–140. doi: 10.1007/BF00324677. [DOI] [PubMed] [Google Scholar]
  39. Held W. A., Ballou B., Mizushima S., Nomura M. Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J Biol Chem. 1974 May 25;249(10):3103–3111. [PubMed] [Google Scholar]
  40. Herold M., Nierhaus K. H. Incorporation of six additional proteins to complete the assembly map of the 50 S subunit from Escherichia coli ribosomes. J Biol Chem. 1987 Jun 25;262(18):8826–8833. [PubMed] [Google Scholar]
  41. Herwig S., Kruft V., Eckart K., Wittmann-Liebold B. Cross-linked amino acids in the protein pairs L3-L19 and L23-L29 of Bacillus stearothermophilus ribosomes after treatment with diepoxybutane. J Biol Chem. 1993 Mar 5;268(7):4643–4650. [PubMed] [Google Scholar]
  42. Holmstrøm K., Brandt T., Kallesøe T. The sequence of a 32,420 bp segment located on the right arm of chromosome II from Saccharomyces cerevisiae. Yeast. 1994 Apr;10 (Suppl A):S47–S62. doi: 10.1002/yea.320100007. [DOI] [PubMed] [Google Scholar]
  43. Hudspeth M. E., Ainley W. M., Shumard D. S., Butow R. A., Grossman L. I. Location and structure of the var1 gene on yeast mitochondrial DNA: nucleotide sequence of the 40.0 allele. Cell. 1982 Sep;30(2):617–626. doi: 10.1016/0092-8674(82)90258-6. [DOI] [PubMed] [Google Scholar]
  44. Hudspeth M. E., Vincent R. D., Perlman P. S., Shumard D. S., Treisman L. O., Grossman L. I. Expandable var1 gene of yeast mitochondrial DNA: in-frame insertions can explain the strain-specific protein size polymorphisms. Proc Natl Acad Sci U S A. 1984 May;81(10):3148–3152. doi: 10.1073/pnas.81.10.3148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Huff M. O., Hanic-Joyce P. J., Dang H., Rodrigues L. A., Ellis S. R. Two inactive fragments derived from the yeast mitochondrial ribosomal protein MrpS28 function in trans to support ribosome assembly and respiratory growth. J Mol Biol. 1993 Oct 20;233(4):597–605. doi: 10.1006/jmbi.1993.1538. [DOI] [PubMed] [Google Scholar]
  46. Isaya G., Kalousek F., Rosenberg L. E. Amino-terminal octapeptides function as recognition signals for the mitochondrial intermediate peptidase. J Biol Chem. 1992 Apr 15;267(11):7904–7910. [PubMed] [Google Scholar]
  47. Isono K., McIninch J. D., Borodovsky M. Characteristic features of the nucleotide sequences of yeast mitochondrial ribosomal protein genes as analyzed by computer program GeneMark. DNA Res. 1994;1(6):263–269. doi: 10.1093/dnares/1.6.263. [DOI] [PubMed] [Google Scholar]
  48. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. VII. Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal Biochem. 1970 Aug;36(2):401–412. doi: 10.1016/0003-2697(70)90376-3. [DOI] [PubMed] [Google Scholar]
  49. Kang W., Matsushita Y., Grohmann L., Graack H. R., Kitakawa M., Isono K. Cloning and analysis of the nuclear gene for YmL33, a protein of the large subunit of the mitochondrial ribosome in Saccharomyces cerevisiae. J Bacteriol. 1991 Jul;173(13):4013–4020. doi: 10.1128/jb.173.13.4013-4020.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kang W., Matsushita Y., Isono K. Cloning and analysis of YMR26, the nuclear gene for a mitochondrial ribosomal protein in Saccharomyces cerevisiae. Mol Gen Genet. 1991 Mar;225(3):474–482. doi: 10.1007/BF00261690. [DOI] [PubMed] [Google Scholar]
  51. Kitakawa M., Graack H. R., Grohmann L., Goldschmidt-Reisin S., Herfurth E., Wittmann-Liebold B., Nishimura T., Isono K. Identification and characterization of the genes for mitochondrial ribosomal proteins of Saccharomyces cerevisiae. Eur J Biochem. 1997 Apr 15;245(2):449–456. doi: 10.1111/j.1432-1033.1997.t01-2-00449.x. [DOI] [PubMed] [Google Scholar]
  52. Kitakawa M., Grohmann L., Graack H. R., Isono K. Cloning and characterization of nuclear genes for two mitochondrial ribosomal proteins in Saccharomyces cerevisiae. Nucleic Acids Res. 1990 Mar 25;18(6):1521–1529. doi: 10.1093/nar/18.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kitakawa M., Isono K. The mitochondrial ribosomes. Biochimie. 1991 Jun;73(6):813–825. doi: 10.1016/0300-9084(91)90061-5. [DOI] [PubMed] [Google Scholar]
  54. Kreader C. A., Langer C. S., Heckman J. E. A mitochondrial protein from Neurospora crassa detected both on ribosomes and in membrane fractions. Analysis of the gene, the message, and the protein. J Biol Chem. 1989 Jan 5;264(1):317–327. [PubMed] [Google Scholar]
  55. Kuiper M. T., Akins R. A., Holtrop M., de Vries H., Lambowitz A. M. Isolation and analysis of the Neurospora crassa Cyt-21 gene. A nuclear gene encoding a mitochondrial ribosomal protein. J Biol Chem. 1988 Feb 25;263(6):2840–2847. [PubMed] [Google Scholar]
  56. Kötter P., Entian K. D. Cloning and analysis of the nuclear gene MRP-S9 encoding mitochondrial ribosomal protein S9 of Saccharomyces cerevisiae. Curr Genet. 1995 Jun;28(1):26–31. doi: 10.1007/BF00311878. [DOI] [PubMed] [Google Scholar]
  57. Kübrich M., Dietmeier K., Pfanner N. Genetic and biochemical dissection of the mitochondrial protein-import machinery. Curr Genet. 1995 Apr;27(5):393–403. doi: 10.1007/BF00311207. [DOI] [PubMed] [Google Scholar]
  58. LaPolla R. J., Lambowitz A. M. Mitochondrial ribosome assembly in Neurospora crassa. Chloramphenicol inhibits the maturation of small ribosomal subunits. J Mol Biol. 1977 Oct 25;116(2):189–205. doi: 10.1016/0022-2836(77)90212-1. [DOI] [PubMed] [Google Scholar]
  59. Lang B. F., Burger G., O'Kelly C. J., Cedergren R., Golding G. B., Lemieux C., Sankoff D., Turmel M., Gray M. W. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997 May 29;387(6632):493–497. doi: 10.1038/387493a0. [DOI] [PubMed] [Google Scholar]
  60. Li Y., Huff M. O., Hanic-Joyce P. J., Ellis S. R. Derivatives of the yeast mitochondrial ribosomal protein MrpS28 replace ribosomal protein S15 as functional components of the Escherichia coli ribosome. J Mol Biol. 1993 Oct 20;233(4):606–614. doi: 10.1006/jmbi.1993.1539. [DOI] [PubMed] [Google Scholar]
  61. Liao X., Butow R. A. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell. 1993 Jan 15;72(1):61–71. doi: 10.1016/0092-8674(93)90050-z. [DOI] [PubMed] [Google Scholar]
  62. Maheshwari K. K., Marzuki S. Defective assembly of the mitochondrial ribosomes in yeast cells grown in the presence of mitochondrial protein synthesis inhibitors. Biochim Biophys Acta. 1985 Apr 19;824(4):273–283. doi: 10.1016/0167-4781(85)90033-8. [DOI] [PubMed] [Google Scholar]
  63. Maheshwari K. K., Marzuki S. The formation of a defective small subunit of the mitochondrial ribosomes in petite mutants of Saccharomyces cerevisiae. Biochim Biophys Acta. 1984 Feb 24;781(1-2):153–164. doi: 10.1016/0167-4781(84)90133-7. [DOI] [PubMed] [Google Scholar]
  64. Marzuki S., Hibbs A. R. Are all mitochondrial translation products synthesized on membrane-bound ribosomes? Biochim Biophys Acta. 1986 Mar 26;866(2-3):120–124. doi: 10.1016/0167-4781(86)90108-9. [DOI] [PubMed] [Google Scholar]
  65. Mason T. L., Pan C., Sanchirico M. E., Sirum-Connolly K. Molecular genetics of the peptidyl transferase center and the unusual Var1 protein in yeast mitochondrial ribosomes. Experientia. 1996 Dec 15;52(12):1148–1157. doi: 10.1007/BF01952114. [DOI] [PubMed] [Google Scholar]
  66. Matsushita Y., Isono K. Mitochondrial transport of mitoribosomal proteins, YmL8 and YmL20, in Saccharomyces cerevisiae. Eur J Biochem. 1993 Jun 1;214(2):577–585. doi: 10.1111/j.1432-1033.1993.tb17956.x. [DOI] [PubMed] [Google Scholar]
  67. Matthews D. E., Hessler R. A., Denslow N. D., Edwards J. S., O'Brien T. W. Protein composition of the bovine mitochondrial ribosome. J Biol Chem. 1982 Aug 10;257(15):8788–8794. [PubMed] [Google Scholar]
  68. McMullin T. W., Haffter P., Fox T. D. A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol Cell Biol. 1990 Sep;10(9):4590–4595. doi: 10.1128/mcb.10.9.4590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Mieszczak M., Kozłowski M., Zagórski W. Protein composition of Saccharomyces cerevisiae mitochondrial ribosomes. Acta Biochim Pol. 1988;35(2):105–118. [PubMed] [Google Scholar]
  70. Miosga T., Boles E., Schaaff-Gerstenschläger I., Schmitt S., Zimmermann F. K. Sequence and function analysis of a 9.74 kb fragment of Saccharomyces cerevisiae chromosome X including the BCK1 gene. Yeast. 1994 Nov;10(11):1481–1488. doi: 10.1002/yea.320101112. [DOI] [PubMed] [Google Scholar]
  71. Myers A. M., Crivellone M. D., Tzagoloff A. Assembly of the mitochondrial membrane system. MRP1 and MRP2, two yeast nuclear genes coding for mitochondrial ribosomal proteins. J Biol Chem. 1987 Mar 5;262(7):3388–3397. [PubMed] [Google Scholar]
  72. Myers A. M., Pape L. K., Tzagoloff A. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J. 1985 Aug;4(8):2087–2092. doi: 10.1002/j.1460-2075.1985.tb03896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Müller E. C., Wittmann-Liebold B. Phylogenetic relationship of organisms obtained by ribosomal protein comparison. Cell Mol Life Sci. 1997 Jan;53(1):34–50. doi: 10.1007/PL00000578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Otaka E., Kobata K. Yeast ribosomal proteins. I. Characterization of cytoplasmic ribosomal proteins by two-dimensional gel electrophoresis. Mol Gen Genet. 1978 Jul 4;162(3):259–268. doi: 10.1007/BF00268851. [DOI] [PubMed] [Google Scholar]
  75. Pan C., Mason T. L. Identification of the yeast nuclear gene for the mitochondrial homologue of bacterial ribosomal protein L16. Nucleic Acids Res. 1995 Sep 25;23(18):3673–3677. doi: 10.1093/nar/23.18.3673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Partaledis J. A., Mason T. L. Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MRP13, a protein of the small subunit of the mitochondrial ribosome. Mol Cell Biol. 1988 Sep;8(9):3647–3660. doi: 10.1128/mcb.8.9.3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Pel H. J., Grivell L. A. Protein synthesis in mitochondria. Mol Biol Rep. 1994 May;19(3):183–194. doi: 10.1007/BF00986960. [DOI] [PubMed] [Google Scholar]
  78. Pfanner N., Neupert W. The mitochondrial protein import apparatus. Annu Rev Biochem. 1990;59:331–353. doi: 10.1146/annurev.bi.59.070190.001555. [DOI] [PubMed] [Google Scholar]
  79. Pietromonaco S. F., Denslow N. D., O'Brien T. W. Proteins of mammalian mitochondrial ribosomes. Biochimie. 1991 Jun;73(6):827–835. doi: 10.1016/0300-9084(91)90062-6. [DOI] [PubMed] [Google Scholar]
  80. Russell G. C., Guest J. R. Sequence similarities within the family of dihydrolipoamide acyltransferases and discovery of a previously unidentified fungal enzyme. Biochim Biophys Acta. 1991 Jan 29;1076(2):225–232. doi: 10.1016/0167-4838(91)90271-z. [DOI] [PubMed] [Google Scholar]
  81. Schulze H., Nierhaus K. H. Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity. EMBO J. 1982;1(5):609–613. doi: 10.1002/j.1460-2075.1982.tb01216.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Sharp P. M., Tuohy T. M., Mosurski K. R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986 Jul 11;14(13):5125–5143. doi: 10.1093/nar/14.13.5125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Spahn C. M., Prescott C. D. Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med (Berl) 1996 Aug;74(8):423–439. doi: 10.1007/BF00217518. [DOI] [PubMed] [Google Scholar]
  84. Strausberg R. L., Butow R. A. Gene conversion at the var1 locus on yeast mitochondrial DNA. Proc Natl Acad Sci U S A. 1981 Jan;78(1):494–498. doi: 10.1073/pnas.78.1.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Stuart R. A., Cyr D. M., Craig E. A., Neupert W. Mitochondrial molecular chaperones: their role in protein translocation. Trends Biochem Sci. 1994 Feb;19(2):87–92. doi: 10.1016/0968-0004(94)90041-8. [DOI] [PubMed] [Google Scholar]
  86. Sánchez H., Fester T., Kloska S., Schröder W., Schuster W. Transfer of rps19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J. 1996 May 1;15(9):2138–2149. [PMC free article] [PubMed] [Google Scholar]
  87. Terpstra P., Butow R. A. The role of var1 in the assembly of yeast mitochondrial ribosomes. J Biol Chem. 1979 Dec 25;254(24):12662–12669. [PubMed] [Google Scholar]
  88. Terpstra P., Zanders E., Butow R. A. The association of var1 with the 38 S mitochondrial ribosomal subunit in yeast. J Biol Chem. 1979 Dec 25;254(24):12653–12661. [PubMed] [Google Scholar]
  89. Towers N. R., Kellerman G. M., Raison J. K., Linnane A. W. The biogenesis of mitochondria 29. Effects of temperature-induced phase changes in membranes on protein synthesis by mitochondria. Biochim Biophys Acta. 1973 Feb 23;299(1):153–161. doi: 10.1016/0005-2787(73)90407-3. [DOI] [PubMed] [Google Scholar]
  90. Tzagoloff A., Myers A. M. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. doi: 10.1146/annurev.bi.55.070186.001341. [DOI] [PubMed] [Google Scholar]
  91. Ulbrich B., Czempiel W., Bass R. Mammalian mitochondrial ribosomes. Studies on the exchangeability of polypeptide chain elongation factors from bacterial and mitochondrial systems. Eur J Biochem. 1980 Jul;108(2):337–343. doi: 10.1111/j.1432-1033.1980.tb04728.x. [DOI] [PubMed] [Google Scholar]
  92. Vandenbol M., Bolle P. A., Dion C., Portetelle D., Hilger F. Sequencing and analysis of a 20.5 kb DNA segment located on the left arm of yeast chromosome XI. Yeast. 1994 Apr;10 (Suppl A):S25–S33. doi: 10.1002/yea.320100004. [DOI] [PubMed] [Google Scholar]
  93. Vandenbol M., Durand P., Dion C., Portetelle D., Hilger F. Sequence of a 17.1 kb DNA fragment from chromosome X of Saccharomyces cerevisiae includes the mitochondrial ribosomal protein L8. Yeast. 1995 Jan;11(1):57–60. doi: 10.1002/yea.320110108. [DOI] [PubMed] [Google Scholar]
  94. Verhasselt P., Aert R., Voet M., Volckaert G. Nucleotide sequence analysis of an 8887 bp region of the left arm of yeast chromosome XIV, encompassing the centromere sequence. Yeast. 1994 Jul;10(7):945–951. doi: 10.1002/yea.320100709. [DOI] [PubMed] [Google Scholar]
  95. Walleczek J., Schüler D., Stöffler-Meilicke M., Brimacombe R., Stöffler G. A model for the spatial arrangement of the proteins in the large subunit of the Escherichia coli ribosome. EMBO J. 1988 Nov;7(11):3571–3576. doi: 10.1002/j.1460-2075.1988.tb03234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Warner J. R. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev. 1989 Jun;53(2):256–271. doi: 10.1128/mr.53.2.256-271.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Weber C. A., Hudspeth M. E., Moore G. P., Grossman L. I. Analysis of the mitochondrial and nuclear genomes of two basidiomycetes, Coprinus cinereus and Coprinus stercorarius. Curr Genet. 1986;10(7):515–525. doi: 10.1007/BF00447385. [DOI] [PubMed] [Google Scholar]
  98. Wenzlau J. M., Perlman P. S. Mobility of two optional G + C-rich clusters of the var1 gene of yeast mitochondrial DNA. Genetics. 1990 Sep;126(1):53–62. doi: 10.1093/genetics/126.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Wiesenberger G., Fox T. D. Pet127p, a membrane-associated protein involved in stability and processing of Saccharomyces cerevisiae mitochondrial RNAs. Mol Cell Biol. 1997 May;17(5):2816–2824. doi: 10.1128/mcb.17.5.2816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Williamson M. P. The structure and function of proline-rich regions in proteins. Biochem J. 1994 Jan 15;297(Pt 2):249–260. doi: 10.1042/bj2970249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Wittmann-Liebold B., Uhlein M., Urlaub H., Müller E. C., Otto A., Bischof O. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1187–1197. doi: 10.1139/o95-128. [DOI] [PubMed] [Google Scholar]
  102. Yang D., Oyaizu Y., Oyaizu H., Olsen G. J., Woese C. R. Mitochondrial origins. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4443–4447. doi: 10.1073/pnas.82.13.4443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Zassenhaus H. P., Farrelly F., Hudspeth M. E., Grossman L. I., Butow R. A. Transcriptional analysis of the Saccharomyces cerevisiae mitochondrial var1 gene: anomalous hybridization of RNA from AT-rich regions. Mol Cell Biol. 1983 Sep;3(9):1615–1624. doi: 10.1128/mcb.3.9.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Zassenhaus H. P., Martin N. C., Butow R. A. Origins of transcripts of the yeast mitochondrial var 1 gene. J Biol Chem. 1984 May 10;259(9):6019–6027. [PubMed] [Google Scholar]
  105. Zinn A. R., Pohlman J. K., Perlman P. S., Butow R. A. In vivo double-strand breaks occur at recombinogenic G + C-rich sequences in the yeast mitochondrial genome. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2686–2690. doi: 10.1073/pnas.85.8.2686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. van Loon A. P., Eilers M., Baker A., Verner K. Transport of proteins into yeast mitochondria. J Cell Biochem. 1988 Jan;36(1):59–71. doi: 10.1002/jcb.240360107. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES