Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 1;329(Pt 3):469–475. doi: 10.1042/bj3290469

Identification of cardiac oxidoreductase(s) involved in the metabolism of the lipid peroxidation-derived aldehyde-4-hydroxynonenal.

S Srivastava 1, A Chandra 1, N H Ansari 1, S K Srivastava 1, A Bhatnagar 1
PMCID: PMC1219066  PMID: 9445372

Abstract

The aim of this study was to identify the cardiac oxidoreductases involved in the metabolism of 4-hydroxy-2-trans-nonenal (HNE), an alpha,beta unsaturated aldehyde generated during the peroxidation of omega-6 polyunsaturated fatty acids. In homogenates of bovine, human and rat ventricles the primary pyridine coenzyme-linked metabolism of HNE was associated with NADPH oxidation. The NADPH-dependent enzyme catalysing HNE reduction was purified to homogeneity from bovine heart. The purified enzyme displayed kinetic and immunological properties identical with the polyol pathway enzyme aldose reductase (AR), and catalysed the reduction of HNE to its alcohol 1,4-dihydroxynonene (DHN), with a Km of 7+/-2 microM. In the presence of NADP the enzyme did not catalyse the oxidation of DHN. During catalysis, HNE did not cause inactivation of AR. Nevertheless when the apoenzyme was incubated with HNE a dissociable complex was formed between the enzyme and HNE, followed by irreversible loss of activity. Inactivation of the enzyme by HNE was prevented by NADP. Partial modification of the enzyme with HNE led to a 17-fold increase in the KHNEm and Kglyceraldehydem, and the HNE-modified enzyme had a 500-fold higher IC50 for sorbinil than for the reduced enzyme, whereas the IC50 for tolrestat increased 25-fold. Incubation of the enzyme with radiolabelled HNE resulted in the incorporation of 2 mol of the aldehyde per mol of the enzyme. Sequence analysis of the radiolabelled peptides revealed modification of Cys-298 and Cys-187. The amino acid sequence of the HNE-modified peptides confirmed that the HNE-reducing cardiac enzyme is AR and not a related protein such as the fibroblast-growth-factor-regulated protein FR-1 or the mouse vas deferens protein MVDP. These results indicate that AR represents the only major oxidoreductase in the heart capable of utilizing HNE. The high affinity of the enzyme for HNE, the lack of inactivation during catalysis, and the lack of significant alcohol dehydrogenase activity of the protein suggests that AR-mediated catalysis of HNE is unlikely to be limited by substrate/product inhibition. Thus AR might constitute an antioxidative enzyme involved in myocardial protection against endogenous and exogenous cytotoxic aldehydes and against oxidative stress.

Full Text

The Full Text of this article is available as a PDF (499.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetti A., Comporti M., Esterbauer H. Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta. 1980 Nov 7;620(2):281–296. doi: 10.1016/0005-2760(80)90209-x. [DOI] [PubMed] [Google Scholar]
  2. Bhatnagar A. Electrophysiological effects of 4-hydroxynonenal, an aldehydic product of lipid peroxidation, on isolated rat ventricular myocytes. Circ Res. 1995 Feb;76(2):293–304. doi: 10.1161/01.res.76.2.293. [DOI] [PubMed] [Google Scholar]
  3. Bhatnagar A., Liu S. Q., Ueno N., Chakrabarti B., Srivastava S. K. Human placental aldose reductase: role of Cys-298 in substrate and inhibitor binding. Biochim Biophys Acta. 1994 Apr 13;1205(2):207–214. doi: 10.1016/0167-4838(94)90235-6. [DOI] [PubMed] [Google Scholar]
  4. Bhatnagar A., Srivastava S. K. Aldose reductase: congenial and injurious profiles of an enigmatic enzyme. Biochem Med Metab Biol. 1992 Oct;48(2):91–121. doi: 10.1016/0885-4505(92)90055-4. [DOI] [PubMed] [Google Scholar]
  5. Blasig I. E., Grune T., Schönheit K., Rohde E., Jakstadt M., Haseloff R. F., Siems W. G. 4-Hydroxynonenal, a novel indicator of lipid peroxidation for reperfusion injury of the myocardium. Am J Physiol. 1995 Jul;269(1 Pt 2):H14–H22. doi: 10.1152/ajpheart.1995.269.1.H14. [DOI] [PubMed] [Google Scholar]
  6. Bohren K. M., Bullock B., Wermuth B., Gabbay K. H. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem. 1989 Jun 5;264(16):9547–9551. [PubMed] [Google Scholar]
  7. Canuto R. A., Ferro M., Muzio G., Bassi A. M., Leonarduzzi G., Maggiora M., Adamo D., Poli G., Lindahl R. Role of aldehyde metabolizing enzymes in mediating effects of aldehyde products of lipid peroxidation in liver cells. Carcinogenesis. 1994 Jul;15(7):1359–1364. doi: 10.1093/carcin/15.7.1359. [DOI] [PubMed] [Google Scholar]
  8. Chandra A., Srivastava S. K. A synthesis of 4-hydroxy-2-trans-nonenal and 4-(3H) 4-hydroxy-2-trans-nonenal. Lipids. 1997 Jul;32(7):779–782. doi: 10.1007/s11745-997-0100-6. [DOI] [PubMed] [Google Scholar]
  9. Cho Y. K., Cook P. F. Inactivation of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii by pyridoxal 5'-phosphate. Determination of the pH dependence of enzyme-reactant dissociation constants from protection against inactivation. J Biol Chem. 1988 Apr 15;263(11):5135–5140. [PubMed] [Google Scholar]
  10. Chouinard S. W., Wilson G. F., Schlimgen A. K., Ganetzky B. A potassium channel beta subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila hyperkinetic locus. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6763–6767. doi: 10.1073/pnas.92.15.6763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Donohue P. J., Alberts G. F., Hampton B. S., Winkles J. A. A delayed-early gene activated by fibroblast growth factor-1 encodes a protein related to aldose reductase. J Biol Chem. 1994 Mar 18;269(11):8604–8609. [PubMed] [Google Scholar]
  12. Esterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  13. Feron V. J., Til H. P., de Vrijer F., Woutersen R. A., Cassee F. R., van Bladeren P. J. Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res. 1991 Mar-Apr;259(3-4):363–385. doi: 10.1016/0165-1218(91)90128-9. [DOI] [PubMed] [Google Scholar]
  14. Ghilarducci D. P., Tjeerdema R. S. Fate and effects of acrolein. Rev Environ Contam Toxicol. 1995;144:95–146. doi: 10.1007/978-1-4612-2550-8_2. [DOI] [PubMed] [Google Scholar]
  15. Grimshaw C. E., Bohren K. M., Lai C. J., Gabbay K. H. Human aldose reductase: subtle effects revealed by rapid kinetic studies of the C298A mutant enzyme. Biochemistry. 1995 Nov 7;34(44):14366–14373. doi: 10.1021/bi00044a013. [DOI] [PubMed] [Google Scholar]
  16. Grune T., Siems W. G., Zollner H., Esterbauer H. Metabolism of 4-hydroxynonenal, a cytotoxic lipid peroxidation product, in Ehrlich mouse ascites cells at different proliferation stages. Cancer Res. 1994 Oct 1;54(19):5231–5235. [PubMed] [Google Scholar]
  17. Harrison D. H., Bohren K. M., Ringe D., Petsko G. A., Gabbay K. H. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry. 1994 Mar 1;33(8):2011–2020. doi: 10.1021/bi00174a006. [DOI] [PubMed] [Google Scholar]
  18. Ishikawa T., Esterbauer H., Sies H. Role of cardiac glutathione transferase and of the glutathione S-conjugate export system in biotransformation of 4-hydroxynonenal in the heart. J Biol Chem. 1986 Feb 5;261(4):1576–1581. [PubMed] [Google Scholar]
  19. Lander H. M. An essential role for free radicals and derived species in signal transduction. FASEB J. 1997 Feb;11(2):118–124. [PubMed] [Google Scholar]
  20. Liu S. Q., Bhatnagar A., Ansari N. H., Srivastava S. K. Identification of the reactive cysteine residue in human placenta aldose reductase. Biochim Biophys Acta. 1993 Aug 7;1164(3):268–272. doi: 10.1016/0167-4838(93)90258-s. [DOI] [PubMed] [Google Scholar]
  21. Liu S. Q., Bhatnagar A., Srivastava S. K. Carboxymethylation-induced activation of bovine lens aldose reductase. Biochim Biophys Acta. 1992 Apr 17;1120(3):329–336. doi: 10.1016/0167-4838(92)90256-d. [DOI] [PubMed] [Google Scholar]
  22. Manthey C. L., Sladek N. E. Aldehyde dehydrogenase-catalyzed bioinactivation of cyclophosphamide. Prog Clin Biol Res. 1989;290:49–63. [PubMed] [Google Scholar]
  23. Matsuura K., Naganeo F., Hara A., Nakayama T., Nakagawa M., Sawada H. Pulmonary carbonyl reductase: metabolism of carbonyl products in lipid peroxidation. Prog Clin Biol Res. 1989;290:335–349. [PubMed] [Google Scholar]
  24. McCormack T., McCormack K. Shaker K+ channel beta subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell. 1994 Dec 30;79(7):1133–1135. doi: 10.1016/0092-8674(94)90004-3. [DOI] [PubMed] [Google Scholar]
  25. Ollinger K., Brunmark A. Effect of different oxygen pressures and N,N'-diphenyl-p-phenylenediamine on Adriamycin toxicity to cultured neonatal rat heart myocytes. Biochem Pharmacol. 1994 Nov 1;48(9):1707–1715. doi: 10.1016/0006-2952(94)90455-3. [DOI] [PubMed] [Google Scholar]
  26. Pailhoux E. A., Martinez A., Veyssiere G. M., Jean C. G. Androgen-dependent protein from mouse vas deferens. cDNA cloning and protein homology with the aldo-keto reductase superfamily. J Biol Chem. 1990 Nov 15;265(32):19932–19936. [PubMed] [Google Scholar]
  27. Parinandi N. L., Thompson E. W., Schmid H. H. Diabetic heart and kidney exhibit increased resistance to lipid peroxidation. Biochim Biophys Acta. 1990 Oct 22;1047(1):63–69. doi: 10.1016/0005-2760(90)90261-u. [DOI] [PubMed] [Google Scholar]
  28. Petrash J. M., Favello A. D. Isolation and characterization of cDNA clones encoding aldose reductase. Curr Eye Res. 1989 Oct;8(10):1021–1027. doi: 10.3109/02713688908997394. [DOI] [PubMed] [Google Scholar]
  29. Petrash J. M., Harter T. M., Devine C. S., Olins P. O., Bhatnagar A., Liu S., Srivastava S. K. Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303. J Biol Chem. 1992 Dec 5;267(34):24833–24840. [PubMed] [Google Scholar]
  30. Quinlan G. J., Mumby S., Pepper J., Gutteridge J. M. Plasma 4-hydroxy-2-nonenal levels during cardiopulmonary bypass, and their relationship to the iron-loading of transferrin. Biochem Mol Biol Int. 1994 Dec;34(6):1277–1282. [PubMed] [Google Scholar]
  31. Schade S. Z., Early S. L., Williams T. R., Kézdy F. J., Heinrikson R. L., Grimshaw C. E., Doughty C. C. Sequence analysis of bovine lens aldose reductase. J Biol Chem. 1990 Mar 5;265(7):3628–3635. [PubMed] [Google Scholar]
  32. Sellin S., Holmquist B., Mannervik B., Vallee B. L. Oxidation and reduction of 4-hydroxyalkenals catalyzed by isozymes of human alcohol dehydrogenase. Biochemistry. 1991 Mar 5;30(9):2514–2518. doi: 10.1021/bi00223a031. [DOI] [PubMed] [Google Scholar]
  33. Singhal S. S., Zimniak P., Awasthi S., Piper J. T., He N. G., Teng J. I., Petersen D. R., Awasthi Y. C. Several closely related glutathione S-transferase isozymes catalyzing conjugation of 4-hydroxynonenal are differentially expressed in human tissues. Arch Biochem Biophys. 1994 Jun;311(2):242–250. doi: 10.1006/abbi.1994.1233. [DOI] [PubMed] [Google Scholar]
  34. Spycher S. E., Tabataba-Vakili S., O'Donnell V. B., Palomba L., Azzi A. Aldose reductase induction: a novel response to oxidative stress of smooth muscle cells. FASEB J. 1997 Feb;11(2):181–188. doi: 10.1096/fasebj.11.2.9039961. [DOI] [PubMed] [Google Scholar]
  35. Srivastava S. K., Ansari N. H., Hair G. A., Das B. Aldose and aldehyde reductases in human tissues. Biochim Biophys Acta. 1984 Aug 21;800(3):220–227. doi: 10.1016/0304-4165(84)90399-4. [DOI] [PubMed] [Google Scholar]
  36. Srivastava S. K., Ansari N. H., Hair G. A., Das B. Aldose and aldehyde reductases in human tissues. Biochim Biophys Acta. 1984 Aug 21;800(3):220–227. doi: 10.1016/0304-4165(84)90399-4. [DOI] [PubMed] [Google Scholar]
  37. Stenberg G., Ridderström M., Engström A., Pemble S. E., Mannervik B. Cloning and heterologous expression of cDNA encoding class alpha rat glutathione transferase 8-8, an enzyme with high catalytic activity towards genotoxic alpha,beta-unsaturated carbonyl compounds. Biochem J. 1992 Jun 1;284(Pt 2):313–319. doi: 10.1042/bj2840313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Strydom D. J., Vallee B. L. Characterization of human alcohol dehydrogenase isoenzymes by high-performance liquid chromatographic peptide mapping. Anal Biochem. 1982 Jul 1;123(2):422–429. doi: 10.1016/0003-2697(82)90467-5. [DOI] [PubMed] [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vander Jagt D. L., Kolb N. S., Vander Jagt T. J., Chino J., Martinez F. J., Hunsaker L. A., Royer R. E. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim Biophys Acta. 1995 Jun 12;1249(2):117–126. doi: 10.1016/0167-4838(95)00021-l. [DOI] [PubMed] [Google Scholar]
  41. Vander Jagt D. L., Robinson B., Taylor K. K., Hunsaker L. A. Aldose reductase from human skeletal and heart muscle. Interconvertible forms related by thiol-disulfide exchange. J Biol Chem. 1990 Dec 5;265(34):20982–20987. [PubMed] [Google Scholar]
  42. Wilson D. K., Bohren K. M., Gabbay K. H., Quiocho F. A. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science. 1992 Jul 3;257(5066):81–84. doi: 10.1126/science.1621098. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES