Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 1;329(Pt 3):477–487. doi: 10.1042/bj3290477

Analysis of abnormalities in purine metabolism leading to gout and to neurological dysfunctions in man.

R Curto 1, E O Voit 1, M Cascante 1
PMCID: PMC1219067  PMID: 9445373

Abstract

A modelling approach is used to analyse diseases associated with purine metabolism in man. The specific focus is on deficiencies in two enzymes, hypoxanthine:guanine phosphoribosyltransferase and adenylosuccinate lyase. These deficiencies can lead to a number of symptoms, including neurological dysfunctions and mental retardation. Although the biochemical mechanisms of dysfunctions associated with adenylosuccinate lyase deficiency are not completely understood, there is at least general agreement in the literature about possible causes. Simulations with our model confirm that accumulation of the two substrates of the enzyme can lead to significant biochemical imbalance. In hypoxanthine:guanine phosphoribosyltransferase deficiency the biochemical mechanisms associated with neurological dysfunctions are less clear. Model analyses support some old hypotheses but also suggest new indicators for possible causes of neurological dysfunctions associated with this deficiency. Hypoxanthine:guanine phosphoribosyltransferase deficiency is known to cause hyperuricaemia and gout. We compare the relative importance of this deficiency with other known causes of gout in humans. The analysis suggests that defects in the excretion of uric acid are more consequential than defects in uric acid synthesis such as hypoxanthine:guanine phosphoribosyltransferase deficiency.

Full Text

The Full Text of this article is available as a PDF (629.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casas-Bruge M., Almenar C., Grau I. M., Jane J., Herrera-Marschitz M., Ungerstedt U. Dopaminergic receptor supersensitivity in self-mutilatory behaviour of Lesch-Nyhan disease. Lancet. 1985 Apr 27;1(8435):991–992. doi: 10.1016/s0140-6736(85)91773-8. [DOI] [PubMed] [Google Scholar]
  2. Cascante M., Franco R., Canela E. I. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. Unbranched pathways. Math Biosci. 1989 Jun;94(2):271–288. doi: 10.1016/0025-5564(89)90067-9. [DOI] [PubMed] [Google Scholar]
  3. Cascante M., Franco R., Canela E. I. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. Complex systems. Math Biosci. 1989 Jun;94(2):289–309. doi: 10.1016/0025-5564(89)90068-0. [DOI] [PubMed] [Google Scholar]
  4. Creese I., Usdin T. B., Snyder S. H. Dopamine receptor binding regulated by guanine nucleotides. Mol Pharmacol. 1979 Jul;16(1):69–76. [PubMed] [Google Scholar]
  5. Curto R., Sorribas A., Cascante M. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature. Math Biosci. 1995 Nov;130(1):25–50. doi: 10.1016/0025-5564(94)00092-e. [DOI] [PubMed] [Google Scholar]
  6. Curto R., Voit E. O., Sorribas A., Cascante M. Validation and steady-state analysis of a power-law model of purine metabolism in man. Biochem J. 1997 Jun 15;324(Pt 3):761–775. doi: 10.1042/bj3240761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehlde M., Zacchi G. MIST: a user-friendly metabolic simulator. Comput Appl Biosci. 1995 Apr;11(2):201–207. doi: 10.1093/bioinformatics/11.2.201. [DOI] [PubMed] [Google Scholar]
  8. Gathof B. S., Jurgens D., Gresser U. Clinical symptoms of patients with partial HPRT deficiency. Adv Exp Med Biol. 1994;370:341–344. doi: 10.1007/978-1-4615-2584-4_73. [DOI] [PubMed] [Google Scholar]
  9. Goldstein M., Anderson L. T., Reuben R., Dancis J. Self-mutilation in Lesch-Nyhan disease is caused by dopaminergic denervation. Lancet. 1985 Feb 9;1(8424):338–339. doi: 10.1016/s0140-6736(85)91107-9. [DOI] [PubMed] [Google Scholar]
  10. Holmes E. W. Kinetic, physical, and regulatory properties of amidophosphoribosyltransferase. Adv Enzyme Regul. 1980;19:215–231. doi: 10.1016/0065-2571(81)90017-0. [DOI] [PubMed] [Google Scholar]
  11. Jackson R. C., Weber G., Morris H. P. IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature. 1975 Jul 24;256(5515):331–333. doi: 10.1038/256331a0. [DOI] [PubMed] [Google Scholar]
  12. Jaeken J., Van den Berghe G. An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet. 1984 Nov 10;2(8411):1058–1061. [PubMed] [Google Scholar]
  13. Jankovic J., Caskey T. C., Stout J. T., Butler I. J. Lesch-Nyhan syndrome: a study of motor behavior and cerebrospinal fluid neurotransmitters. Ann Neurol. 1988 May;23(5):466–469. doi: 10.1002/ana.410230507. [DOI] [PubMed] [Google Scholar]
  14. Jiménez M. L., Puig J. G., Mateos F. A., Ramos T. H., Melián J. S., Nieto V. G., Becker M. A. Increased purine nucleotide degradation in the central nervous system (CNS) in PRPP synthetase superactivity. Adv Exp Med Biol. 1989;253A:9–13. doi: 10.1007/978-1-4684-5673-8_2. [DOI] [PubMed] [Google Scholar]
  15. Kelley W. N., Greene M. L., Rosenbloom F. M., Henderson J. F., Seegmiller J. E. Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout. Ann Intern Med. 1969 Jan;70(1):155–206. doi: 10.7326/0003-4819-70-1-155. [DOI] [PubMed] [Google Scholar]
  16. Lake C. R., Ziegler M. G. Lesch-Nyhan syndrome: low dopamine-beta-hydroxylase activity and diminished sympathetic response to stress and posture. Science. 1977 May 20;196(4292):905–906. doi: 10.1126/science.860124. [DOI] [PubMed] [Google Scholar]
  17. Lloyd K. G., Hornykiewicz O., Davidson L., Shannak K., Farley I., Goldstein M., Shibuya M., Kelley W. N., Fox I. H. Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. N Engl J Med. 1981 Nov 5;305(19):1106–1111. doi: 10.1056/NEJM198111053051902. [DOI] [PubMed] [Google Scholar]
  18. Maddocks J., Reed T. Urine test for adenylosuccinase deficiency in autistic children. Lancet. 1989 Jan 21;1(8630):158–159. doi: 10.1016/s0140-6736(89)91172-0. [DOI] [PubMed] [Google Scholar]
  19. McDonald J. A., Kelley W. N. Hypoxanthine-guanine phosphoribosyltransferase deficiency: altered kinetic properties of a specific mutant form of the enzyme. Adv Exp Med Biol. 1973;41:167–175. doi: 10.1007/978-1-4684-3294-7_20. [DOI] [PubMed] [Google Scholar]
  20. McDonald J. A., Kelley W. N. Lesch-Nyhan syndrome: altered kinetic properties of mutant enzyme. Science. 1971 Feb 19;171(3972):689–691. doi: 10.1126/science.171.3972.689. [DOI] [PubMed] [Google Scholar]
  21. McKeran R. O., Howell A., Andrews T. M., Watts R. W., Arlett C. F. Observations on the growth in vitro of myeloid progenitor cells and fibroblasts from hemizygotes and heterozygotes for "complete" and "partial" hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency, and their relevance to the pathogenesis of brain damage in the Lesch-Nyhan syndrome. J Neurol Sci. 1974 Jun;22(2):183–195. doi: 10.1016/0022-510x(74)90245-7. [DOI] [PubMed] [Google Scholar]
  22. Page T., Bakay B., Nissinen E., Nyhan W. L. Hypoxanthine-guanine phosphoribosyltransferase variants: correlation of clinical phenotype with enzyme activity. J Inherit Metab Dis. 1981;4(4):203–206. doi: 10.1007/BF02263652. [DOI] [PubMed] [Google Scholar]
  23. Rijksen G., Staal G. E., van der Vlist M. J., Beemer F. a., Troost J., Gutensohn W., van Laarhoven J. P., de Bruyn C. H. Partial hypoxanthine-guanine phosphoribosyl transferase deficiency with full expression of the Lesch-Nyhan syndrome. Hum Genet. 1981;57(1):39–47. doi: 10.1007/BF00271165. [DOI] [PubMed] [Google Scholar]
  24. Roufogalis B. D., Thornton M., Wade D. N. Nucleotide requirement of dopamine sensitive adenylate cyclase in synaptosomal membranes from the striatum of rat brain. J Neurochem. 1976 Dec;27(6):1533–1535. doi: 10.1111/j.1471-4159.1976.tb02640.x. [DOI] [PubMed] [Google Scholar]
  25. Savageau M. A., Sorribas A. Constraints among molecular and systemic properties: implications for physiological genetics. J Theor Biol. 1989 Nov 8;141(1):93–115. doi: 10.1016/s0022-5193(89)80011-6. [DOI] [PubMed] [Google Scholar]
  26. Seegmiller J. E., Rosenbloom F. M., Kelley W. N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967 Mar 31;155(3770):1682–1684. doi: 10.1126/science.155.3770.1682. [DOI] [PubMed] [Google Scholar]
  27. Skolnick P., Marangos P. J., Goodwin F. K., Edwards M., Paul S. Identification of inosine and hypoxanthine as endogenous inhibitors of [3H] diazepam binding in the central nervous system. Life Sci. 1978 Oct 9;23(14):1473–1480. doi: 10.1016/0024-3205(78)90128-5. [DOI] [PubMed] [Google Scholar]
  28. Snyder F. F., Chudley A. E., MacLeod P. M., Carter R. J., Fung E., Lowe J. K. Partial deficiency of hypoxanthine-guanine phosphoribosyltransferase with reduced affinity for PP-ribose-P in four related males with gout. Hum Genet. 1984;67(1):18–22. doi: 10.1007/BF00270552. [DOI] [PubMed] [Google Scholar]
  29. Sperling O., Frank M., Ophir R., Liberman U. A., Adam A., de Vries A. Partial deficiency of hypoxanthine-guanine phosphoribosyltransferase associated with gout and uric acid lithiasis. Rev Eur Etud Clin Biol. 1970 Nov;15(9):942–947. [PubMed] [Google Scholar]
  30. Stone R. L., Aimi J., Barshop B. A., Jaeken J., Van den Berghe G., Zalkin H., Dixon J. E. A mutation in adenylosuccinate lyase associated with mental retardation and autistic features. Nat Genet. 1992 Apr;1(1):59–63. doi: 10.1038/ng0492-59. [DOI] [PubMed] [Google Scholar]
  31. Van Acker K. J., Simmonds H. A. Long-term evolution of type 1 adenine phosphoribosyltransferase (APRT) deficiency. Adv Exp Med Biol. 1991;309B:91–94. doi: 10.1007/978-1-4615-7703-4_20. [DOI] [PubMed] [Google Scholar]
  32. Van Acker K. J., Simmonds H. A., Potter C., Cameron J. S. Complete deficiency of adenine phosphoribosyltransferase. Report of a family. N Engl J Med. 1977 Jul 21;297(3):127–132. doi: 10.1056/NEJM197707212970302. [DOI] [PubMed] [Google Scholar]
  33. Van den Bergh F., Vincent M. F., Jaeken J., Van den Berghe G. Functional studies in fibroblasts of adenylosuccinase-deficient children. J Inherit Metab Dis. 1993;16(2):425–434. doi: 10.1007/BF00710293. [DOI] [PubMed] [Google Scholar]
  34. Van den Bergh F., Vincent M. F., Jaeken J., Van den Berghe G. Residual adenylosuccinase activities in fibroblasts of adenylosuccinase-deficient children: parallel deficiency with adenylosuccinate and succinyl-AICAR in profoundly retarded patients and non-parallel deficiency in a mildly retarded girl. J Inherit Metab Dis. 1993;16(2):415–424. doi: 10.1007/BF00710291. [DOI] [PubMed] [Google Scholar]
  35. Van den Berghe G., Van den Bergh F., Vincent M. F., Jaeken J. Adenylosuccinate lyase deficiency: an update. Adv Exp Med Biol. 1994;370:363–366. doi: 10.1007/978-1-4615-2584-4_78. [DOI] [PubMed] [Google Scholar]
  36. Weber G. Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes Memorial Lecture. Cancer Res. 1983 Aug;43(8):3466–3492. [PubMed] [Google Scholar]
  37. Wilson J. M., Young A. B., Kelley W. N. Hypoxanthine-guanine phosphoribosyltransferase deficiency. The molecular basis of the clinical syndromes. N Engl J Med. 1983 Oct 13;309(15):900–910. doi: 10.1056/NEJM198310133091507. [DOI] [PubMed] [Google Scholar]
  38. Wright D. G., LaRussa V. F., Knight R. D., Bednarek J. M., Cutting M. A. Guanine ribonucleotide metabolism and the regulation of myelopoiesis. Adv Exp Med Biol. 1991;309B:301–304. doi: 10.1007/978-1-4615-7703-4_67. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES