Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 1;329(Pt 3):489–495. doi: 10.1042/bj3290489

Inhibition of inositol trisphosphate-induced calcium release by cyclic ADP-ribose in A7r5 smooth-muscle cells and in 16HBE14o- bronchial mucosal cells.

L Missiaen 1, J B Parys 1, H De Smedt 1, I Sienaert 1, H Sipma 1, S Vanlingen 1, K Maes 1, K Kunzelmann 1, R Casteels 1
PMCID: PMC1219068  PMID: 9445374

Abstract

Ca2+ release from intracellular stores occurs via two families of intracellular channels, each with their own specific agonist: Ins(1, 4,5)P3 for the Ins(1,4,5)P3 receptor and cyclic ADP-ribose (cADPR) for the ryanodine receptor. We now report that cADPR inhibited Ins(1, 4,5)P3-induced Ca2+ release in permeabilized A7r5 cells with an IC50 of 20 microM, and in permeabilized 16HBE14o- bronchial mucosal cells with an IC50 of 35 microM. This inhibition was accompanied by an increase in specific [3H]Ins(1,4,5)P3 binding. 8-Amino-cADPR, but not 8-bromo-cADPR, antagonized this effect of cADPR. The inhibition was prevented by a whole series of inositol phosphates (10 microM) that did not affect Ins(1,4,5)P3-induced Ca2+ release, and by micromolar concentrations of PPi and various nucleotide di- or triphosphates. We propose that cADPR must interact with a novel regulatory site on the Ins(1,4,5)P3 receptor or on an associated protein. This site is neither the Ins(1,4,5)P3-binding domain, which prefers Ins(1,4,5)P3 and only binds nucleotides and PPi in the millimolar range, nor the stimulatory adenine nucleotide binding site.

Full Text

The Full Text of this article is available as a PDF (329.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  2. Bezprozvanny I., Bezprozvannaya S., Ehrlich B. E. Caffeine-induced inhibition of inositol(1,4,5)-trisphosphate-gated calcium channels from cerebellum. Mol Biol Cell. 1994 Jan;5(1):97–103. doi: 10.1091/mbc.5.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bezprozvanny I., Ehrlich B. E. ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron. 1993 Jun;10(6):1175–1184. doi: 10.1016/0896-6273(93)90065-y. [DOI] [PubMed] [Google Scholar]
  4. Byron K. L., Taylor C. W. Spontaneous Ca2+ spiking in a vascular smooth muscle cell line is independent of the release of intracellular Ca2+ stores. J Biol Chem. 1993 Apr 5;268(10):6945–6952. [PubMed] [Google Scholar]
  5. Clementi E., Riccio M., Sciorati C., Nisticò G., Meldolesi J. The type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of the nitric oxide/cGMP pathway. J Biol Chem. 1996 Jul 26;271(30):17739–17745. doi: 10.1074/jbc.271.30.17739. [DOI] [PubMed] [Google Scholar]
  6. Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
  7. Ehrlich B. E., Kaftan E., Bezprozvannaya S., Bezprozvanny I. The pharmacology of intracellular Ca(2+)-release channels. Trends Pharmacol Sci. 1994 May;15(5):145–149. doi: 10.1016/0165-6147(94)90074-4. [DOI] [PubMed] [Google Scholar]
  8. Ferris C. D., Huganir R. L., Snyder S. H. Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2147–2151. doi: 10.1073/pnas.87.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferris C. D., Snyder S. H. Inositol 1,4,5-trisphosphate-activated calcium channels. Annu Rev Physiol. 1992;54:469–488. doi: 10.1146/annurev.ph.54.030192.002345. [DOI] [PubMed] [Google Scholar]
  10. Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989 Nov 2;342(6245):32–38. doi: 10.1038/342032a0. [DOI] [PubMed] [Google Scholar]
  11. Galione A. Ca(2+)-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol Sci. 1992 Aug;13(8):304–306. doi: 10.1016/0165-6147(92)90096-o. [DOI] [PubMed] [Google Scholar]
  12. Gerasimenko O. V., Gerasimenko J. V., Tepikin A. V., Petersen O. H. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell. 1995 Feb 10;80(3):439–444. doi: 10.1016/0092-8674(95)90494-8. [DOI] [PubMed] [Google Scholar]
  13. Gromada J., Jørgensen T. D., Dissing S. Cyclic ADP-ribose and inositol 1,4,5-triphosphate mobilizes Ca2+ from distinct intracellular pools in permeabilized lacrimal acinar cells. FEBS Lett. 1995 Mar 6;360(3):303–306. doi: 10.1016/0014-5793(95)00131-r. [DOI] [PubMed] [Google Scholar]
  14. Guse A. H., Silva C. P., Weber K., Ashamu G. A., Potter B. V., Mayr G. W. Regulation of cADP-ribose-induced Ca2+ release by Mg2+ and inorganic phosphate. J Biol Chem. 1996 Sep 27;271(39):23946–23953. doi: 10.1074/jbc.271.39.23946. [DOI] [PubMed] [Google Scholar]
  15. Guse A. H., da Silva C. P., Emmrich F., Ashamu G. A., Potter B. V., Mayr G. W. Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+ release in T lymphocyte cell lines. J Immunol. 1995 Oct 1;155(7):3353–3359. [PubMed] [Google Scholar]
  16. Hilly M., Piétri-Rouxel F., Coquil J. F., Guy M., Mauger J. P. Thiol reagents increase the affinity of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1993 Aug 5;268(22):16488–16494. [PubMed] [Google Scholar]
  17. Iino M. Effects of adenine nucleotides on inositol 1,4,5-trisphosphate-induced calcium release in vascular smooth muscle cells. J Gen Physiol. 1991 Oct;98(4):681–698. doi: 10.1085/jgp.98.4.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kim H. Y., Thomas D., Hanley M. R. Stimulation of Ca(2+)-dependent membrane currents in Xenopus oocytes by microinjection of pyrimidine nucleotide-glucose conjugates. Mol Pharmacol. 1996 Feb;49(2):360–364. [PubMed] [Google Scholar]
  19. Lee H. C. Cyclic ADP-ribose: a calcium mobilizing metabolite of NAD+. Mol Cell Biochem. 1994 Sep;138(1-2):229–235. doi: 10.1007/BF00928466. [DOI] [PubMed] [Google Scholar]
  20. Macháty Z., Funahashi H., Day B. N., Prather R. S. Developmental changes in the intracellular Ca2+ release mechanisms in porcine oocytes. Biol Reprod. 1997 Apr;56(4):921–930. doi: 10.1095/biolreprod56.4.921. [DOI] [PubMed] [Google Scholar]
  21. Maeda N., Kawasaki T., Nakade S., Yokota N., Taguchi T., Kasai M., Mikoshiba K. Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem. 1991 Jan 15;266(2):1109–1116. [PubMed] [Google Scholar]
  22. Marshall I. C., Taylor C. W. Biphasic effects of cytosolic Ca2+ on Ins(1,4,5)P3-stimulated Ca2+ mobilization in hepatocytes. J Biol Chem. 1993 Jun 25;268(18):13214–13220. [PubMed] [Google Scholar]
  23. McPherson P. S., Campbell K. P. The ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993 Jul 5;268(19):13765–13768. [PubMed] [Google Scholar]
  24. Mignery G. A., Newton C. L., Archer B. T., 3rd, Südhof T. C. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1990 Jul 25;265(21):12679–12685. [PubMed] [Google Scholar]
  25. Mignery G. A., Südhof T. C. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J. 1990 Dec;9(12):3893–3898. doi: 10.1002/j.1460-2075.1990.tb07609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mikoshiba K. Inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci. 1993 Mar;14(3):86–89. doi: 10.1016/0165-6147(93)90069-v. [DOI] [PubMed] [Google Scholar]
  27. Missiaen L., De Smedt H., Droogmans G., Casteels R. Ca2+ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca2+ in permeabilized cells. Nature. 1992 Jun 18;357(6379):599–602. doi: 10.1038/357599a0. [DOI] [PubMed] [Google Scholar]
  28. Missiaen L., Declerck I., Droogmans G., Plessers L., De Smedt H., Raeymaekers L., Casteels R. Agonist-dependent Ca2+ and Mn2+ entry dependent on state of filling of Ca2+ stores in aortic smooth muscle cells of the rat. J Physiol. 1990 Aug;427:171–186. doi: 10.1113/jphysiol.1990.sp018166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Missiaen L., Parys J. B., De Smedt H., Himpens B., Casteels R. Inhibition of inositol trisphosphate-induced calcium release by caffeine is prevented by ATP. Biochem J. 1994 May 15;300(Pt 1):81–84. doi: 10.1042/bj3000081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Missiaen L., Parys J. B., Smedt H. D., Sienaert I., Sipma H., Vanlingen S., Maes K., Casteels R. Effect of adenine nucleotides on myo-inositol-1,4,5-trisphosphate-induced calcium release. Biochem J. 1997 Aug 1;325(Pt 3):661–666. doi: 10.1042/bj3250661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Morrissette J., Heisermann G., Cleary J., Ruoho A., Coronado R. Cyclic ADP-ribose induced Ca2+ release in rabbit skeletal muscle sarcoplasmic reticulum. FEBS Lett. 1993 Sep 20;330(3):270–274. doi: 10.1016/0014-5793(93)80886-y. [DOI] [PubMed] [Google Scholar]
  32. Noguchi N., Takasawa S., Nata K., Tohgo A., Kato I., Ikehata F., Yonekura H., Okamoto H. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem. 1997 Feb 7;272(6):3133–3136. doi: 10.1074/jbc.272.6.3133. [DOI] [PubMed] [Google Scholar]
  33. Parker I., Ivorra I. Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J Physiol. 1991 Feb;433:229–240. doi: 10.1113/jphysiol.1991.sp018423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parys J. B., Missiaen L., De Smedt H., Droogmans G., Casteels R. Bell-shaped activation of inositol-1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth-muscle cells. Pflugers Arch. 1993 Sep;424(5-6):516–522. doi: 10.1007/BF00374916. [DOI] [PubMed] [Google Scholar]
  35. Parys J. B., de Smedt H., Missiaen L., Bootman M. D., Sienaert I., Casteels R. Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Cell Calcium. 1995 Apr;17(4):239–249. doi: 10.1016/0143-4160(95)90070-5. [DOI] [PubMed] [Google Scholar]
  36. Pietri F., Hilly M., Mauger J. P. Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1990 Oct 15;265(29):17478–17485. [PubMed] [Google Scholar]
  37. Putney J. W., Jr, Bird G. S. Calcium mobilization by inositol phosphates and other intracellular messengers. Trends Endocrinol Metab. 1994 Aug;5(6):256–260. doi: 10.1016/1043-2760(94)p3085-l. [DOI] [PubMed] [Google Scholar]
  38. Sitsapesan R., McGarry S. J., Williams A. J. Cyclic ADP-ribose competes with ATP for the adenine nucleotide binding site on the cardiac ryanodine receptor Ca(2+)-release channel. Circ Res. 1994 Sep;75(3):596–600. doi: 10.1161/01.res.75.3.596. [DOI] [PubMed] [Google Scholar]
  39. Supattapone S., Worley P. F., Baraban J. M., Snyder S. H. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem. 1988 Jan 25;263(3):1530–1534. [PubMed] [Google Scholar]
  40. Thomas D., Kim H. Y., Hanley M. R. Regulation of inositol trisphosphate-induced membrane currents in Xenopus oocytes by a Jurkat cell calcium influx factor. Biochem J. 1996 Sep 1;318(Pt 2):649–656. doi: 10.1042/bj3180649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thorn P., Gerasimenko O., Petersen O. H. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells. EMBO J. 1994 May 1;13(9):2038–2043. doi: 10.1002/j.1460-2075.1994.tb06478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vu C. Q., Lu P. J., Chen C. S., Jacobson M. K. 2'-Phospho-cyclic ADP-ribose, a calcium-mobilizing agent derived from NADP. J Biol Chem. 1996 Mar 1;271(9):4747–4754. [PubMed] [Google Scholar]
  43. Walseth T. F., Aarhus R., Kerr J. A., Lee H. C. Identification of cyclic ADP-ribose-binding proteins by photoaffinity labeling. J Biol Chem. 1993 Dec 15;268(35):26686–26691. [PubMed] [Google Scholar]
  44. Walseth T. F., Lee H. C. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim Biophys Acta. 1993 Sep 13;1178(3):235–242. doi: 10.1016/0167-4889(93)90199-y. [DOI] [PubMed] [Google Scholar]
  45. Willcocks A. L., Cooke A. M., Potter B. V., Nahorski S. R. Stereospecific recognition sites for [3H]inositol(1,4,5)-triphosphate in particulate preparations of rat cerebellum. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1071–1078. doi: 10.1016/0006-291x(87)90756-x. [DOI] [PubMed] [Google Scholar]
  46. Worley P. F., Baraban J. M., Supattapone S., Wilson V. S., Snyder S. H. Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem. 1987 Sep 5;262(25):12132–12136. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES