Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 1;329(Pt 3):497–503. doi: 10.1042/bj3290497

Hereditary cystatin C amyloid angiopathy: monitoring the presence of the Leu-68-->Gln cystatin C variant in cerebrospinal fluids and monocyte cultures by MS.

B Asgeirsson 1, S Haebel 1, L Thorsteinsson 1, E Helgason 1, K O Gudmundsson 1, G Gudmundsson 1, P Roepstorff 1
PMCID: PMC1219069  PMID: 9445375

Abstract

Hereditary cystatin C amyloid angiopathy (HCCAA) is an autosomal dominant condition in which the patients suffer at an early age from repeated cerebral haemorrhages. The development of HCCAA is directly linked to a Leu-68-->Gln (L68Q) mutation in the cystatin C protein sequence. The concentration of cystatin C in cerebrospinal fluid (CSF) of HCCAA patients is markedly diminished and cultivated monocytes from affected individuals accumulate cystatin C. The goal of this work was to characterize cystatin C isolated from CSF and monocyte cultures originating from healthy persons and HCCAA patients with respect to the L68Q mutation. Cystatin C was isolated by carboxymethylpapain affinity chromatography. Proteins from CSF and monocyte cultures that bound specifically to the carboxymethylated papain column were resolved by reverse-phase HPLC chromatography and tryptic peptides were subsequently analysed by matrix-assisted laser desorption ionization MS. No evidence for mutated cystatin C protein was found in CSF samples from healthy subjects or HCCAA patients, but approx. 60% of the protein was found to be hydroxylated on Pro-3. No evidence was found for secretion of mutated cystatin C from HCCAA monocytes. However, we obtained evidence for the presence of mutated cystatin C in HCCAA monocytes. These results support the conclusion that the mutated cystatin C is retained in association with the monocytes and not secreted. An increased intracellular concentration would presumably promote the aggregation and denaturation of the mutated cystatin C, leading to the formation of amyloid fibrils and cell death.

Full Text

The Full Text of this article is available as a PDF (493.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson M. Cystatins. Methods Enzymol. 1994;244:685–700. doi: 10.1016/0076-6879(94)44051-4. [DOI] [PubMed] [Google Scholar]
  2. Abrahamson M., Grubb A. Increased body temperature accelerates aggregation of the Leu-68-->Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1416–1420. doi: 10.1073/pnas.91.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abrahamson M., Jonsdottir S., Olafsson I., Jensson O., Grubb A. Hereditary cystatin C amyloid angiopathy: identification of the disease-causing mutation and specific diagnosis by polymerase chain reaction based analysis. Hum Genet. 1992 Jun;89(4):377–380. doi: 10.1007/BF00194306. [DOI] [PubMed] [Google Scholar]
  4. Abrahamson M., Mason R. W., Hansson H., Buttle D. J., Grubb A., Ohlsson K. Human cystatin C. role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase. Biochem J. 1991 Feb 1;273(Pt 3):621–626. doi: 10.1042/bj2730621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Abrahamson M., Ritonja A., Brown M. A., Grubb A., Machleidt W., Barrett A. J. Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. J Biol Chem. 1987 Jul 15;262(20):9688–9694. [PubMed] [Google Scholar]
  6. Anastasi A., Brown M. A., Kembhavi A. A., Nicklin M. J., Sayers C. A., Sunter D. C., Barrett A. J. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem J. 1983 Apr 1;211(1):129–138. doi: 10.1042/bj2110129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benedikz E., Blöndal H., Gudmundsson G. Skin deposits in hereditary cystatin C amyloidosis. Virchows Arch A Pathol Anat Histopathol. 1990;417(4):325–331. doi: 10.1007/BF01605784. [DOI] [PubMed] [Google Scholar]
  8. Cohen D. H., Feiner H., Jensson O., Frangione B. Amyloid fibril in hereditary cerebral hemorrhage with amyloidosis (HCHWA) is related to the gastroentero-pancreatic neuroendocrine protein, gamma trace. J Exp Med. 1983 Aug 1;158(2):623–628. doi: 10.1084/jem.158.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghiso J., Jensson O., Frangione B. Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of gamma-trace basic protein (cystatin C). Proc Natl Acad Sci U S A. 1986 May;83(9):2974–2978. doi: 10.1073/pnas.83.9.2974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grubb A., Jensson O., Gudmundsson G., Arnason A., Löfberg H., Malm J. Abnormal metabolism of gamma-trace alkaline microprotein. The basic defect in hereditary cerebral hemorrhage with amyloidosis. N Engl J Med. 1984 Dec 13;311(24):1547–1549. doi: 10.1056/NEJM198412133112406. [DOI] [PubMed] [Google Scholar]
  11. Grubb A., Löfberg H. Human gamma-trace, a basic microprotein: amino acid sequence and presence in the adenohypophysis. Proc Natl Acad Sci U S A. 1982 May;79(9):3024–3027. doi: 10.1073/pnas.79.9.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gudmundsson G., Hallgrímsson J., Jónasson T. A., Bjarnason O. Hereditary cerebral haemorrhage with amyloidosis. Brain. 1972;95(2):387–404. doi: 10.1093/brain/95.2.387. [DOI] [PubMed] [Google Scholar]
  13. Hall A., Dalbøge H., Grubb A., Abrahamson M. Importance of the evolutionarily conserved glycine residue in the N-terminal region of human cystatin C (Gly-11) for cysteine endopeptidase inhibition. Biochem J. 1993 Apr 1;291(Pt 1):123–129. doi: 10.1042/bj2910123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jensson O., Gudmundsson G., Arnason A., Blöndal H., Petursdottir I., Thorsteinsson L., Grubb A., Löfberg H., Cohen D., Frangione B. Hereditary cystatin C (gamma-trace) amyloid angiopathy of the CNS causing cerebral hemorrhage. Acta Neurol Scand. 1987 Aug;76(2):102–114. doi: 10.1111/j.1600-0404.1987.tb03553.x. [DOI] [PubMed] [Google Scholar]
  15. Löfberg H., Grubb A. O., Nilsson E. K., Jensson O., Gudmundsson G., Blöndal H., Arnason A., Thorsteinsson L. Immunohistochemical characterization of the amyloid deposits and quantitation of pertinent cerebrospinal fluid proteins in hereditary cerebral hemorrhage with amyloidosis. Stroke. 1987 Mar-Apr;18(2):431–440. doi: 10.1161/01.str.18.2.431. [DOI] [PubMed] [Google Scholar]
  16. Nicklin M. J., Barrett A. J. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin. Biochem J. 1984 Oct 1;223(1):245–253. doi: 10.1042/bj2230245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olafsson I., Gudmundsson G., Abrahamson M., Jensson O., Grubb A. The amino terminal portion of cerebrospinal fluid cystatin C in hereditary cystatin C amyloid angiopathy is not truncated: direct sequence analysis from agarose gel electropherograms. Scand J Clin Lab Invest. 1990 Feb;50(1):85–93. doi: 10.1080/00365519009091569. [DOI] [PubMed] [Google Scholar]
  18. Olafsson I., Löfberg H., Abrahamson M., Grubb A. Production, characterization and use of monoclonal antibodies against the major extracellular human cysteine proteinase inhibitors cystatin C and kininogen. Scand J Clin Lab Invest. 1988 Oct;48(6):573–582. doi: 10.3109/00365518809085775. [DOI] [PubMed] [Google Scholar]
  19. Olafsson I., Thorsteinsson L., Jensson O. The molecular pathology of hereditary cystatin C amyloid angiopathy causing brain hemorrhage. Brain Pathol. 1996 Apr;6(2):121–126. doi: 10.1111/j.1750-3639.1996.tb00795.x. [DOI] [PubMed] [Google Scholar]
  20. Palsdottir A., Abrahamson M., Thorsteinsson L., Arnason A., Olafsson I., Grubb A., Jensson O. Mutation in cystatin C gene causes hereditary brain haemorrhage. Lancet. 1988 Sep 10;2(8611):603–604. doi: 10.1016/s0140-6736(88)90641-1. [DOI] [PubMed] [Google Scholar]
  21. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  22. Tavera C., Guillemot J. C., Capdevielle J., Ferrara P., Leung-Tack J., Collé A. A rapid two-step purification of rat cystatin C, one major inhibitor of cysteine proteinases. Prep Biochem. 1989;19(4):279–291. doi: 10.1080/10826068908544918. [DOI] [PubMed] [Google Scholar]
  23. Thorsteinsson L., Georgsson G., Asgeirsson B., Bjarnadóttir M., Olafsson I., Jensson O., Gudmundsson G. On the role of monocytes/macrophages in the pathogenesis of central nervous system lesions in hereditary cystatin C amyloid angiopathy. J Neurol Sci. 1992 Apr;108(2):121–128. doi: 10.1016/0022-510x(92)90042-j. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES