Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 1;329(Pt 3):511–518. doi: 10.1042/bj3290511

Sulphation of N-linked oligosaccharides of vesicular stomatitis and influenza virus envelope glycoproteins: host cell specificity, subcellular localization and identification of substituted saccharides.

V K Karaivanova 1, R G Spiro 1
PMCID: PMC1219071  PMID: 9445377

Abstract

The presence of sulphate groups on various saccharide residues of N-linked carbohydrate units has now been observed in a number of glycoproteins. To explore the cell specificity of this post-translational modification, we evaluated sulphate incorporation into virus envelope glycoproteins by a variety of cells, since it is believed that assembly of their N-linked oligosaccharides is to a large extent dependent on the enzymic machinery of the host. Employing the vesicular stomatitis virus (VSV) envelope glycoprotein (G protein) as a model, we noted that the addition of [35S]sulphate substituents into its complex carbohydrate units occurred in Madin-Darby canine kidney (MDCK), Madin-Darby bovine kidney, LLC-PK1 and BHK-21 cell lines but was not detectable in BRL 3A, BW5147.3, Chinese hamster ovary, HepG2, NRK-49F, IEC-18, PtK1 or 3T3 cells. The sulphate groups were exclusively located on C-3 of galactose [Gal(3-SO4)] and/or C-6 of N-acetylglucosamine [GlcNAc(6-SO4)] residues in the N-acetyllactosamine sequence of the branch chains. Moreover, we observed that the pronounced host-cell-dependence of the terminal galactose sulphation was reflected by the 3'-phosphoadenosine 5'-phosphosulphate:Gal-3-O-sulphotransferase activity assayed in vitro. Comparative studies carried out on the haemagglutinin of the influenza virus envelope formed by MDCK and LLC-PK1 cells indicated that sulphate in this glycoprotein was confined to its complex N-linked oligosaccharides where it occurred as Gal(3-SO4) and GlcNAc(6-SO4) on peripheral chains as well as on the mannose-substituted N-acetylglucosamine of the core. Since sulphation in both internal and peripheral locations of the virus glycoproteins was found to be arrested by the alpha1-->2 mannosidase inhibitor, kifunensine, as well as by the intracellular migration block imposed by brefeldin A, it was concluded that this modification is a late biosynthetic event which most likely takes place in the trans-Golgi network.

Full Text

The Full Text of this article is available as a PDF (402.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba M., Pauwels R., Balzarini J., Arnout J., Desmyter J., De Clercq E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6132–6136. doi: 10.1073/pnas.85.16.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagasra O., Whittle P., Heins B., Pomerantz R. J. Anti-human immunodeficiency virus type 1 activity of sulfated monosaccharides: comparison with sulfated polysaccharides and other polyions. J Infect Dis. 1991 Dec;164(6):1082–1090. doi: 10.1093/infdis/164.6.1082. [DOI] [PubMed] [Google Scholar]
  3. Bernstein H. B., Compans R. W. Sulfation of the human immunodeficiency virus envelope glycoprotein. J Virol. 1992 Dec;66(12):6953–6959. doi: 10.1128/jvi.66.12.6953-6959.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanken W. M., Van den Eijnden D. H. Biosynthesis of terminal Gal alpha 1----3Gal beta 1----4GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide alpha 1----3-galactosyltransferase from calf thymus. J Biol Chem. 1985 Oct 25;260(24):12927–12934. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Chege N. W., Pfeffer S. R. Compartmentation of the Golgi complex: brefeldin-A distinguishes trans-Golgi cisternae from the trans-Golgi network. J Cell Biol. 1990 Sep;111(3):893–899. doi: 10.1083/jcb.111.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Compans R. W., Pinter A. Incorporation of sulfate into influenza virus glycoproteins. Virology. 1975 Jul;66(1):151–160. doi: 10.1016/0042-6822(75)90186-5. [DOI] [PubMed] [Google Scholar]
  8. Daniel P. F., Winchester B., Warren C. D. Mammalian alpha-mannosidases--multiple forms but a common purpose? Glycobiology. 1994 Oct;4(5):551–566. doi: 10.1093/glycob/4.5.551. [DOI] [PubMed] [Google Scholar]
  9. Edge A. S., Kahn C. R., Spiro R. G. Insulin receptor carbohydrate units contain poly-N-acetyllactosamine chains. Endocrinology. 1990 Oct;127(4):1887–1895. doi: 10.1210/endo-127-4-1887. [DOI] [PubMed] [Google Scholar]
  10. Edge A. S., Spiro R. G. Presence of sulfate in N-glycosidically linked carbohydrate units of calf thyroid plasma membrane glycoproteins. J Biol Chem. 1984 Apr 25;259(8):4710–4713. [PubMed] [Google Scholar]
  11. Edge A. S., Spiro R. G. Structural elucidation of glycosaminoglycans through characterization of disaccharides obtained after fragmentation by hydrazine-nitrous acid treatment. Arch Biochem Biophys. 1985 Aug 1;240(2):560–572. doi: 10.1016/0003-9861(85)90063-3. [DOI] [PubMed] [Google Scholar]
  12. Elbein A. D., Tropea J. E., Mitchell M., Kaushal G. P. Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem. 1990 Sep 15;265(26):15599–15605. [PubMed] [Google Scholar]
  13. Fiete D., Srivastava V., Hindsgaul O., Baenziger J. U. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha that mediates rapid clearance of lutropin. Cell. 1991 Dec 20;67(6):1103–1110. doi: 10.1016/0092-8674(91)90287-9. [DOI] [PubMed] [Google Scholar]
  14. Galili U., Clark M. R., Shohet S. B., Buehler J., Macher B. A. Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1----3Gal epitope in primates. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1369–1373. doi: 10.1073/pnas.84.5.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Green E. D., Boime I., Baenziger J. U. Differential processing of Asn-linked oligosaccharides on pituitary glycoprotein hormones: implications for biologic function. Mol Cell Biochem. 1986 Nov-Dec;72(1-2):81–100. doi: 10.1007/BF00230637. [DOI] [PubMed] [Google Scholar]
  16. Hsieh P., Rosner M. R., Robbins P. W. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins. J Biol Chem. 1983 Feb 25;258(4):2548–2554. [PubMed] [Google Scholar]
  17. Hsu C. H., Kingsbury D. W. Contribution of oligosaccharide sulfation to the charge heterogeneity of a viral glycoprotein. J Biol Chem. 1982 Aug 10;257(15):9035–9038. [PubMed] [Google Scholar]
  18. Hård K., Van Zadelhoff G., Moonen P., Kamerling J. P., Vliegenthart F. G. The Asn-linked carbohydrate chains of human Tamm-Horsfall glycoprotein of one male. Novel sulfated and novel N-acetylgalactosamine-containing N-linked carbohydrate chains. Eur J Biochem. 1992 Nov 1;209(3):895–915. doi: 10.1111/j.1432-1033.1992.tb17362.x. [DOI] [PubMed] [Google Scholar]
  19. Kato Y., Spiro R. G. Characterization of a thyroid sulfotransferase responsible for the 3-O-sulfation of terminal beta-D-galactosyl residues in N-linked carbohydrate units. J Biol Chem. 1989 Feb 25;264(6):3364–3371. [PubMed] [Google Scholar]
  20. Kitazume-Kawaguchi S., Inoue S., Inoue Y., Lennarz W. J. Identification of sulfated oligosialic acid units in the O-linked glycan of the sea urchin egg receptor for sperm. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3650–3655. doi: 10.1073/pnas.94.8.3650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lederman S., Gulick R., Chess L. Dextran sulfate and heparin interact with CD4 molecules to inhibit the binding of coat protein (gp120) of HIV. J Immunol. 1989 Aug 15;143(4):1149–1154. [PubMed] [Google Scholar]
  23. Liedtke S., Adamski M., Geyer R., Pfützner A., Rübsamen-Waigmann H., Geyer H. Oligosaccharide profiles of HIV-2 external envelope glycoprotein: dependence on host cells and virus isolates. Glycobiology. 1994 Aug;4(4):477–484. doi: 10.1093/glycob/4.4.477. [DOI] [PubMed] [Google Scholar]
  24. Locker J. K., Griffiths G., Horzinek M. C., Rottier P. J. O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N- and O-linked glycosylation. J Biol Chem. 1992 Jul 15;267(20):14094–14101. doi: 10.1016/S0021-9258(19)49683-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Merkle R. K., Elbein A. D., Heifetz A. The effect of swainsonine and castanospermine on the sulfation of the oligosaccharide chains of N-linked glycoproteins. J Biol Chem. 1985 Jan 25;260(2):1083–1089. [PubMed] [Google Scholar]
  26. Mir-Shekari S. Y., Ashford D. A., Harvey D. J., Dwek R. A., Schulze I. T. The glycosylation of the influenza A virus hemagglutinin by mammalian cells. A site-specific study. J Biol Chem. 1997 Feb 14;272(7):4027–4036. doi: 10.1074/jbc.272.7.4027. [DOI] [PubMed] [Google Scholar]
  27. Moore S. E., Spiro R. G. Inhibition of glucose trimming by castanospermine results in rapid degradation of unassembled major histocompatibility complex class I molecules. J Biol Chem. 1993 Feb 25;268(6):3809–3812. [PubMed] [Google Scholar]
  28. Moremen K. W., Trimble R. B., Herscovics A. Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology. 1994 Apr;4(2):113–125. doi: 10.1093/glycob/4.2.113. [DOI] [PubMed] [Google Scholar]
  29. Nakamura K., Bhown A. S., Compans R. W. Glycosylation sites of influenza viral glycoproteins. Tryptic glycopeptides from the A/WSN (H0N1) hemagglutinin glycoprotein. Virology. 1980 Nov;107(1):208–221. doi: 10.1016/0042-6822(80)90286-x. [DOI] [PubMed] [Google Scholar]
  30. Nakamura K., Compans R. W. Host cell- and virus strain-dependent differences in oligosaccharides of hemagglutinin glycoproteins of influenza A viruses. Virology. 1979 May;95(1):8–23. doi: 10.1016/0042-6822(79)90397-0. [DOI] [PubMed] [Google Scholar]
  31. Nayak B. R., Spiro R. G. Localization and structure of the asparagine-linked oligosaccharides of type IV collagen from glomerular basement membrane and lens capsule. J Biol Chem. 1991 Jul 25;266(21):13978–13987. [PubMed] [Google Scholar]
  32. Paulson J. C. Glycoproteins: what are the sugar chains for? Trends Biochem Sci. 1989 Jul;14(7):272–276. doi: 10.1016/0968-0004(89)90062-5. [DOI] [PubMed] [Google Scholar]
  33. Prehm P., Scheid A., Choppin P. W. The carbohydrate structure of the glycoproteins of the paramyxovirus SV5 grown in bovine kidney cells. J Biol Chem. 1979 Oct 10;254(19):9669–9677. [PubMed] [Google Scholar]
  34. Rabouille C., Spiro R. G. Nonselective utilization of the endomannosidase pathway for processing glycoproteins by human hepatoma (HepG2) cells. J Biol Chem. 1992 Jun 5;267(16):11573–11578. [PubMed] [Google Scholar]
  35. Rademacher T. W., Parekh R. B., Dwek R. A. Glycobiology. Annu Rev Biochem. 1988;57:785–838. doi: 10.1146/annurev.bi.57.070188.004033. [DOI] [PubMed] [Google Scholar]
  36. Reading C. L., Penhoet E. E., Ballou C. E. Carbohydrate structure of vesicular stomatitis virus glycoprotein. J Biol Chem. 1978 Aug 25;253(16):5600–5612. [PubMed] [Google Scholar]
  37. Roux L., Holojda S., Sundblad G., Freeze H. H., Varki A. Sulfated N-linked oligosaccharides in mammalian cells. I. Complex-type chains with sialic acids and O-sulfate esters. J Biol Chem. 1988 Jun 25;263(18):8879–8889. [PubMed] [Google Scholar]
  38. Sampath D., Varki A., Freeze H. H. The spectrum of incomplete N-linked oligosaccharides synthesized by endothelial cells in the presence of brefeldin A. J Biol Chem. 1992 Mar 5;267(7):4440–4455. [PubMed] [Google Scholar]
  39. Shilatifard A., Merkle R. K., Helland D. E., Welles J. L., Haseltine W. A., Cummings R. D. Complex-type N-linked oligosaccharides of gp120 from human immunodeficiency virus type 1 contain sulfated N-acetylglucosamine. J Virol. 1993 Feb;67(2):943–952. doi: 10.1128/jvi.67.2.943-952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shite S., Seguchi T., Mizoguchi H., Ono M., Kuwano M. Differential effects of brefeldin A on sialylation of N- and O-linked oligosaccharides in low density lipoprotein receptor and epidermal growth factor receptor. J Biol Chem. 1990 Oct 15;265(29):17385–17388. [PubMed] [Google Scholar]
  41. Skelton T. P., Hooper L. V., Srivastava V., Hindsgaul O., Baenziger J. U. Characterization of a sulfotransferase responsible for the 4-O-sulfation of terminal beta-N-acetyl-D-galactosamine on asparagine-linked oligosaccharides of glycoprotein hormones. J Biol Chem. 1991 Sep 15;266(26):17142–17150. [PubMed] [Google Scholar]
  42. Spiro M. J., Spiro R. G. Effect of anion-specific inhibitors on the utilization of sugar nucleotides for N-linked carbohydrate unit assembly by thyroid endoplasmic reticulum vesicles. J Biol Chem. 1985 May 10;260(9):5808–5815. [PubMed] [Google Scholar]
  43. Spiro R. G., Bhoyroo V. D. Occurrence of alpha-D-galactosyl residues in the thyroglobulins from several species. Localization in the saccharide chains of the complex carbohydrate units. J Biol Chem. 1984 Aug 10;259(15):9858–9866. [PubMed] [Google Scholar]
  44. Spiro R. G., Bhoyroo V. D. Occurrence of sulfate in the asparagine-linked complex carbohydrate units of thyroglobulin. Identification and localization of galactose 3-sulfate and N-acetylglucosamine 6-sulfate residues in the human and calf proteins. J Biol Chem. 1988 Oct 5;263(28):14351–14358. [PubMed] [Google Scholar]
  45. Spiro R. G., Yasumoto Y., Bhoyroo V. Characterization of a rat liver Golgi sulphotransferase responsible for the 6-O-sulphation of N-acetylglucosamine residues in beta-linkage to mannose: role in assembly of sialyl-galactosyl-N-acetylglucosamine 6-sulphate sequence of N-linked oligosaccharides. Biochem J. 1996 Oct 1;319(Pt 1):209–216. doi: 10.1042/bj3190209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weng S., Spiro R. G. Demonstration that a kifunensine-resistant alpha-mannosidase with a unique processing action on N-linked oligosaccharides occurs in rat liver endoplasmic reticulum and various cultured cells. J Biol Chem. 1993 Dec 5;268(34):25656–25663. [PubMed] [Google Scholar]
  47. Yoshima H., Nakanishi M., Okada Y., Kobata A. Carbohydrate structures of HVJ (Sendai virus) glycoproteins. J Biol Chem. 1981 Jun 10;256(11):5355–5361. [PubMed] [Google Scholar]
  48. de Waard P., Koorevaar A., Kamerling J. P., Vliegenthart J. F. Structure determination by 1H NMR spectroscopy of (sulfated) sialylated N-linked carbohydrate chains released from porcine thyroglobulin by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase-F. J Biol Chem. 1991 Mar 5;266(7):4237–4243. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES