Abstract
Arcelin-1 is a lectin-like protein found in the seeds of wild varieties of the kidney bean (Phaseolus vulgaris). This protein displays insecticidal properties, but the mechanism of action is as yet unknown. In the present study we investigated the biochemical and biophysical properties of arcelin-1 from Phaseolus vulgaris cv. RAZ-2. Native arcelin-1 is a dimeric glycoprotein of 60 kDa, built from the non-covalent association of two identical monomers. This dimer resists dissociation by chaotropic agents and is highly resistant to proteolytic enzymes. Each subunit contains 10% (w/w) neutral sugars which belong to the high-mannose and complex-type glycans attached to three glycosylation sites. No interaction of the protein with simple sugars could be detected, but arcelin-1 displays an intrinsic specificity in binding complex glycans. Arcelin-1 therefore differs from the closely related phytohaemagglutinin lectins and alpha-amylase inhibitor in several respects: oligomerization states, sugar-binding affinities and the type and number of glycan chains. These features may be related to the toxicity of arcelin-1.
Full Text
The Full Text of this article is available as a PDF (561.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atherton E., Clive D. L., Sheppard R. C. Letter: Polyamide supports for polypeptide synthesis. J Am Chem Soc. 1975 Oct 29;97(22):6584–6585. doi: 10.1021/ja00855a053. [DOI] [PubMed] [Google Scholar]
- Bompard-Gilles C., Rousseau P., Rougé P., Payan F. Substrate mimicry in the active center of a mammalian alpha-amylase: structural analysis of an enzyme-inhibitor complex. Structure. 1996 Dec 15;4(12):1441–1452. doi: 10.1016/s0969-2126(96)00151-7. [DOI] [PubMed] [Google Scholar]
- Bourne Y., Mazurier J., Legrand D., Rougé P., Montreuil J., Spik G., Cambillau C. Structures of a legume lectin complexed with the human lactotransferrin N2 fragment, and with an isolated biantennary glycopeptide: role of the fucose moiety. Structure. 1994 Mar 15;2(3):209–219. doi: 10.1016/s0969-2126(00)00022-8. [DOI] [PubMed] [Google Scholar]
- Bourne Y., Roussel A., Frey M., Rougé P., Fontecilla-Camps J. C., Cambillau C. Three-dimensional structures of complexes of Lathyrus ochrus isolectin I with glucose and mannose: fine specificity of the monosaccharide-binding site. Proteins. 1990;8(4):365–376. doi: 10.1002/prot.340080410. [DOI] [PubMed] [Google Scholar]
- Chrispeels M. J., Raikhel N. V. Lectins, lectin genes, and their role in plant defense. Plant Cell. 1991 Jan;3(1):1–9. doi: 10.1105/tpc.3.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derewenda Z., Yariv J., Helliwell J. R., Kalb A. J., Dodson E. J., Papiz M. Z., Wan T., Campbell J. The structure of the saccharide-binding site of concanavalin A. EMBO J. 1989 Aug;8(8):2189–2193. doi: 10.1002/j.1460-2075.1989.tb08341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dill K., Olson J. D. Picogram detection levels of asialofetuin via the carbohydrate moieties using the light addressable potentiometric sensor. Glycoconj J. 1995 Oct;12(5):660–663. doi: 10.1007/BF00731262. [DOI] [PubMed] [Google Scholar]
- Drickamer K. Multiplicity of lectin-carbohydrate interactions. Nat Struct Biol. 1995 Jun;2(6):437–439. doi: 10.1038/nsb0695-437. [DOI] [PubMed] [Google Scholar]
- GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
- Goossens A., Geremia R., Bauw G., Van Montagu M., Angenon G. Isolation and characterisation of arcelin-5 proteins and cDNAs. Eur J Biochem. 1994 Nov 1;225(3):787–795. doi: 10.1111/j.1432-1033.1994.0787b.x. [DOI] [PubMed] [Google Scholar]
- Hamelryck T. W., Poortmans F., Goossens A., Angenon G., Van Montagu M., Wyns L., Loris R. Crystal structure of arcelin-5, a lectin-like defense protein from Phaseolus vulgaris. J Biol Chem. 1996 Dec 20;271(51):32796–32802. doi: 10.1074/jbc.271.51.32796. [DOI] [PubMed] [Google Scholar]
- Hartweck L. M., Vogelzang R. D., Osborn T. C. Characterization and comparison of arcelin seed protein variants from common bean. Plant Physiol. 1991 Sep;97(1):204–211. doi: 10.1104/pp.97.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huesing J. E., Shade R. E., Chrispeels M. J., Murdock L. L. Alpha-amylase inhibitor, not phytohemagglutinin, explains resistance of common bean seeds to cowpea weevil. Plant Physiol. 1991 Jul;96(3):993–996. doi: 10.1104/pp.96.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- John M. E., Long C. M. Sequence analysis of arcelin 2, a lectin-like plant protein. Gene. 1990 Feb 14;86(2):171–176. doi: 10.1016/0378-1119(90)90276-w. [DOI] [PubMed] [Google Scholar]
- Koninkx J. F., Hendriks H. G., van Rossum J. M., van den Ingh T. S., Mouwen J. M. Interaction of legume lectins with the cellular metabolism of differentiated Caco-2 cells. Gastroenterology. 1992 May;102(5):1516–1523. doi: 10.1016/0016-5085(92)91709-d. [DOI] [PubMed] [Google Scholar]
- Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
- Lueken K., Mazarguil H., Rougé P. The identification of two peptide sequences of light subunits of the Lathyrus ochrus isolectins containing a sequential epitope. Immunol Lett. 1988 Dec;19(4):309–312. doi: 10.1016/0165-2478(88)90160-5. [DOI] [PubMed] [Google Scholar]
- Mirkov T. E., Chrispeels M. J. Mutation of Asn128 to Asp of Phaseolus vulgaris leucoagglutinin (PHA-L) eliminates carbohydrate-binding and biological activity. Glycobiology. 1993 Dec;3(6):581–587. doi: 10.1093/glycob/3.6.581. [DOI] [PubMed] [Google Scholar]
- Mirkov T. E., Wahlstrom J. M., Hagiwara K., Finardi-Filho F., Kjemtrup S., Chrispeels M. J. Evolutionary relationships among proteins in the phytohemagglutinin-arcelin-alpha-amylase inhibitor family of the common bean and its relatives. Plant Mol Biol. 1994 Nov;26(4):1103–1113. doi: 10.1007/BF00040692. [DOI] [PubMed] [Google Scholar]
- Osborn T. C., Burow M., Bliss F. A. Purification and characterization of arcelin seed protein from common bean. Plant Physiol. 1988 Feb;86(2):399–405. doi: 10.1104/pp.86.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborni T. C., Alexander D. C., Sun S. S., Cardona C., Bliss F. A. Insecticidal activity and lectin homology of arcelin seed protein. Science. 1988 Apr 8;240(4849):207–210. doi: 10.1126/science.240.4849.207. [DOI] [PubMed] [Google Scholar]
- Schroeder H. E., Gollasch S., Moore A., Tabe L. M., Craig S., Hardie D. C., Chrispeels M. J., Spencer D., Higgins TJV. Bean [alpha]-Amylase Inhibitor Confers Resistance to the Pea Weevil (Bruchus pisorum) in Transgenic Peas (Pisum sativum L.). Plant Physiol. 1995 Apr;107(4):1233–1239. doi: 10.1104/pp.107.4.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinohara Y., Kim F., Shimizu M., Goto M., Tosu M., Hasegawa Y. Kinetic measurement of the interaction between an oligosaccharide and lectins by a biosensor based on surface plasmon resonance. Eur J Biochem. 1994 Jul 1;223(1):189–194. doi: 10.1111/j.1432-1033.1994.tb18982.x. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Sturm A., Bergwerff A. A., Vliegenthart J. F. 1H-NMR structural determination of the N-linked carbohydrate chains on glycopeptides obtained from the bean lectin phytohemagglutinin. Eur J Biochem. 1992 Feb 15;204(1):313–316. doi: 10.1111/j.1432-1033.1992.tb16639.x. [DOI] [PubMed] [Google Scholar]
- Young N. M., Watson D. C., Yaguchi M., Adar R., Arango R., Rodriguez-Arango E., Sharon N., Blay P. K., Thibault P. C-terminal post-translational proteolysis of plant lectins and their recombinant forms expressed in Escherichia coli. Characterization of "ragged ends" by mass spectrometry. J Biol Chem. 1995 Feb 10;270(6):2563–2570. doi: 10.1074/jbc.270.6.2563. [DOI] [PubMed] [Google Scholar]
- van Eijsden R. R., Hoedemaeker F. J., Díaz C. L., Lugtenberg B. J., de Pater B. S., Kijne J. W. Mutational analysis of pea lectin. Substitution of Asn125 for Asp in the monosaccharide-binding site eliminates mannose/glucose-binding activity. Plant Mol Biol. 1992 Dec;20(6):1049–1058. doi: 10.1007/BF00028892. [DOI] [PubMed] [Google Scholar]
