Abstract
Biotin-dependent enzymes contain a biotinyl-lysine residue in a conserved sequence motif, MKM, located in a surface hairpin turn in one of the two beta-sheets that make up the domain. A sub-gene encoding the 82-residue C-terminal biotinyl domain from the biotin carboxy carrier protein of acetyl-CoA carboxylase from Escherichia coli as a fusion protein with glutathione S-transferase was created and over-expressed in E. coli. The biotinyl domain was readily released by cleavage with thrombin. Five mutant domains were created in which the conserved MKM motif was systematically replaced: by MAK and KAM, in which the target lysine is moved one place; by KKM and MKK, in which a second potential site for biotinylation is introduced; and by DKA, the motif found in the correspondingly conserved site of lipoylation in the structurally related lipoyl domains of 2-oxo acid dehydrogenase multienzyme complexes. No biotinylation of the MAK or KAM mutants was observed in vivo or by purified biotinyl protein ligase in vitro; in the KKM and MKK mutants, only one lysine residue, presumed to be that in its native position in the hairpin turn, was found to be biotinylated in vivo and in vitro. The DKA mutant was not biotinylated in vivo, but was partly lipoylated and octanoylated. It was also a poor substrate for lipoylation in vitro catalysed by the E. coli lipoyl protein ligase encoded by the lplA gene. The flanking sequence in the MKM motif is important, but not crucial, and appears to have been conserved in part to be compatible with the subsequent carboxylation reactions of biotin-dependent enzymes. The DKA motif, displayed in the hairpin loop, is sufficient to address lipoylation in E. coli but probably by a pathway different from that mediated by the lplA-dependent ligase. The recognition of the structurally homologous lipoyl and biotinyl domains by the appropriate ligase evidently has a major structural component to it, notably the positioning of the target lysine residue in the exposed hairpin loop, but there appear to be additional recognition sites elsewhere on the domains.
Full Text
The Full Text of this article is available as a PDF (359.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali S. T., Moir A. J., Ashton P. R., Engel P. C., Guest J. R. Octanoylation of the lipoyl domains of the pyruvate dehydrogenase complex in a lipoyl-deficient strain of Escherichia coli. Mol Microbiol. 1990 Jun;4(6):943–950. doi: 10.1111/j.1365-2958.1990.tb00667.x. [DOI] [PubMed] [Google Scholar]
- Athappilly F. K., Hendrickson W. A. Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure. 1995 Dec 15;3(12):1407–1419. doi: 10.1016/s0969-2126(01)00277-5. [DOI] [PubMed] [Google Scholar]
- Barker D. F., Campbell A. M. Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli. J Mol Biol. 1981 Mar 15;146(4):469–492. doi: 10.1016/0022-2836(81)90043-7. [DOI] [PubMed] [Google Scholar]
- Barker D. F., Campbell A. M. The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase. J Mol Biol. 1981 Mar 15;146(4):451–467. doi: 10.1016/0022-2836(81)90042-5. [DOI] [PubMed] [Google Scholar]
- Berg A., Vervoort J., de Kok A. Solution structure of the lipoyl domain of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii. J Mol Biol. 1996 Aug 23;261(3):432–442. doi: 10.1006/jmbi.1996.0474. [DOI] [PubMed] [Google Scholar]
- Berg A., Vervoort J., de Kok A. Three-dimensional structure in solution of the N-terminal lipoyl domain of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Eur J Biochem. 1997 Mar 1;244(2):352–360. doi: 10.1111/j.1432-1033.1997.00352.x. [DOI] [PubMed] [Google Scholar]
- Brocklehurst S. M., Perham R. N. Prediction of the three-dimensional structures of the biotinylated domain from yeast pyruvate carboxylase and of the lipoylated H-protein from the pea leaf glycine cleavage system: a new automated method for the prediction of protein tertiary structure. Protein Sci. 1993 Apr;2(4):626–639. doi: 10.1002/pro.5560020413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brookfield D. E., Green J., Ali S. T., Machado R. S., Guest J. R. Evidence for two protein-lipoylation activities in Escherichia coli. FEBS Lett. 1991 Dec 16;295(1-3):13–16. doi: 10.1016/0014-5793(91)81373-g. [DOI] [PubMed] [Google Scholar]
- Buoncristiani M. R., Otsuka A. J. Overproduction and rapid purification of the biotin operon repressor from Escherichia coli. J Biol Chem. 1988 Jan 15;263(2):1013–1016. [PubMed] [Google Scholar]
- Chapman-Smith A., Turner D. L., Cronan J. E., Jr, Morris T. W., Wallace J. C. Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy carrier protein of Escherichia coli acetyl-CoA carboxylase. Biochem J. 1994 Sep 15;302(Pt 3):881–887. doi: 10.1042/bj3020881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dardel F., Davis A. L., Laue E. D., Perham R. N. Three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J Mol Biol. 1993 Feb 20;229(4):1037–1048. doi: 10.1006/jmbi.1993.1103. [DOI] [PubMed] [Google Scholar]
- Dardel F., Packman L. C., Perham R. N. Expression in Escherichia coli of a sub-gene encoding the lipoyl domain of the pyruvate dehydrogenase complex of Bacillus stearothermophilus. FEBS Lett. 1990 May 21;264(2):206–210. doi: 10.1016/0014-5793(90)80249-i. [DOI] [PubMed] [Google Scholar]
- Fall R. R., Vagelos P. R. Acetyl coenzyme A carboxylase. Molecular forms and subunit composition of biotin carboxyl carrier protein. J Biol Chem. 1972 Dec 25;247(24):8005–8015. [PubMed] [Google Scholar]
- Fujiwara K., Okamura-Ikeda K., Motokawa Y. Expression of mature bovine H-protein of the glycine cleavage system in Escherichia coli and in vitro lipoylation of the apoform. J Biol Chem. 1992 Oct 5;267(28):20011–20016. [PubMed] [Google Scholar]
- Green D. E., Morris T. W., Green J., Cronan J. E., Jr, Guest J. R. Purification and properties of the lipoate protein ligase of Escherichia coli. Biochem J. 1995 Aug 1;309(Pt 3):853–862. doi: 10.1042/bj3090853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green J. D., Laue E. D., Perham R. N., Ali S. T., Guest J. R. Three-dimensional structure of a lipoyl domain from the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol. 1995 Apr 28;248(2):328–343. doi: 10.1016/s0022-2836(95)80054-9. [DOI] [PubMed] [Google Scholar]
- Griffin T. A., Wynn R. M., Chuang D. T. Expression and assembly of mature apotransacylase (E2b) of bovine branched-chain alpha-keto acid dehydrogenase complex in Escherichia coli. Demonstration of transacylase activity and modification by lipoylation. J Biol Chem. 1990 Jul 15;265(20):12104–12110. [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Howard P. K., Shaw J., Otsuka A. J. Nucleotide sequence of the birA gene encoding the biotin operon repressor and biotin holoenzyme synthetase functions of Escherichia coli. Gene. 1985;35(3):321–331. doi: 10.1016/0378-1119(85)90011-3. [DOI] [PubMed] [Google Scholar]
- Knowles J. R. The mechanism of biotin-dependent enzymes. Annu Rev Biochem. 1989;58:195–221. doi: 10.1146/annurev.bi.58.070189.001211. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leon-Del-Rio A., Gravel R. A. Sequence requirements for the biotinylation of carboxyl-terminal fragments of human propionyl-CoA carboxylase alpha subunit expressed in Escherichia coli. J Biol Chem. 1994 Sep 16;269(37):22964–22968. [PubMed] [Google Scholar]
- Macherel D., Bourguignon J., Forest E., Faure M., Cohen-Addad C., Douce R. Expression, lipoylation and structure determination of recombinant pea H-protein in Escherichia coli. Eur J Biochem. 1996 Feb 15;236(1):27–33. doi: 10.1111/j.1432-1033.1996.00027.x. [DOI] [PubMed] [Google Scholar]
- Morris T. W., Reed K. E., Cronan J. E., Jr Identification of the gene encoding lipoate-protein ligase A of Escherichia coli. Molecular cloning and characterization of the lplA gene and gene product. J Biol Chem. 1994 Jun 10;269(23):16091–16100. [PubMed] [Google Scholar]
- Morris T. W., Reed K. E., Cronan J. E., Jr Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein. J Bacteriol. 1995 Jan;177(1):1–10. doi: 10.1128/jb.177.1.1-10.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nenortas E., Beckett D. Purification and characterization of intact and truncated forms of the Escherichia coli biotin carboxyl carrier subunit of acetyl-CoA carboxylase. J Biol Chem. 1996 Mar 29;271(13):7559–7567. doi: 10.1074/jbc.271.13.7559. [DOI] [PubMed] [Google Scholar]
- Okamura-Ikeda K., Ohmura Y., Fujiwara K., Motokawa Y. Cloning and nucleotide sequence of the gcv operon encoding the Escherichia coli glycine-cleavage system. Eur J Biochem. 1993 Sep 1;216(2):539–548. doi: 10.1111/j.1432-1033.1993.tb18172.x. [DOI] [PubMed] [Google Scholar]
- Packman L. C., Borges A., Perham R. N. Amino acid sequence analysis of the lipoyl and peripheral subunit-binding domains in the lipoate acetyltransferase component of the pyruvate dehydrogenase complex from Bacillus stearothermophilus. Biochem J. 1988 May 15;252(1):79–86. doi: 10.1042/bj2520079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Packman L. C., Hale G., Perham R. N. Repeating functional domains in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. EMBO J. 1984 Jun;3(6):1315–1319. doi: 10.1002/j.1460-2075.1984.tb01969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pares S., Cohen-Addad C., Sieker L., Neuburger M., Douce R. X-ray structure determination at 2.6-A resolution of a lipoate-containing protein: the H-protein of the glycine decarboxylase complex from pea leaves. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4850–4853. doi: 10.1073/pnas.91.11.4850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel M. S., Roche T. E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990 Nov;4(14):3224–3233. doi: 10.1096/fasebj.4.14.2227213. [DOI] [PubMed] [Google Scholar]
- Perham R. N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991 Sep 3;30(35):8501–8512. doi: 10.1021/bi00099a001. [DOI] [PubMed] [Google Scholar]
- Reed K. E., Cronan J. E., Jr Escherichia coli exports previously folded and biotinated protein domains. J Biol Chem. 1991 Jun 25;266(18):11425–11428. [PubMed] [Google Scholar]
- Ricaud P. M., Howard M. J., Roberts E. L., Broadhurst R. W., Perham R. N. Three-dimensional structure of the lipoyl domain from the dihydrolipoyl succinyltransferase component of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol. 1996 Nov 22;264(1):179–190. doi: 10.1006/jmbi.1996.0632. [DOI] [PubMed] [Google Scholar]
- Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
- Schatz P. J. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y) 1993 Oct;11(10):1138–1143. doi: 10.1038/nbt1093-1138. [DOI] [PubMed] [Google Scholar]
- Shenoy B. C., Paranjape S., Murtif V. L., Kumar G. K., Samols D., Wood H. G. Effect of mutations at Met-88 and Met-90 on the biotination of Lys-89 of the apo 1.3S subunit of transcarboxylase. FASEB J. 1988 Jun;2(9):2505–2511. doi: 10.1096/fasebj.2.9.3131174. [DOI] [PubMed] [Google Scholar]
- Shenoy B. C., Samols D., Kumar G. K. The conserved methionines of the 1.3 S biotinyl subunit of transcarboxylase: effect of mutations on conformation and activity. Arch Biochem Biophys. 1993 Aug 1;304(2):359–366. doi: 10.1006/abbi.1993.1362. [DOI] [PubMed] [Google Scholar]
- Spencer M. E., Darlison M. G., Stephens P. E., Duckenfield I. K., Guest J. R. Nucleotide sequence of the sucB gene encoding the dihydrolipoamide succinyltransferase of Escherichia coli K12 and homology with the corresponding acetyltransferase. Eur J Biochem. 1984 Jun 1;141(2):361–374. doi: 10.1111/j.1432-1033.1984.tb08200.x. [DOI] [PubMed] [Google Scholar]
- Stephens P. E., Darlison M. G., Lewis H. M., Guest J. R. The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the dihydrolipoamide acetyltransferase component. Eur J Biochem. 1983 Jul 1;133(3):481–489. doi: 10.1111/j.1432-1033.1983.tb07490.x. [DOI] [PubMed] [Google Scholar]
- Tsao K. L., DeBarbieri B., Michel H., Waugh D. S. A versatile plasmid expression vector for the production of biotinylated proteins by site-specific, enzymatic modification in Escherichia coli. Gene. 1996 Feb 22;169(1):59–64. doi: 10.1016/0378-1119(95)00762-8. [DOI] [PubMed] [Google Scholar]
- Wakil S. J., Stoops J. K., Joshi V. C. Fatty acid synthesis and its regulation. Annu Rev Biochem. 1983;52:537–579. doi: 10.1146/annurev.bi.52.070183.002541. [DOI] [PubMed] [Google Scholar]
- Wallis N. G., Perham R. N. Structural dependence of post-translational modification and reductive acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex. J Mol Biol. 1994 Feb 11;236(1):209–216. doi: 10.1006/jmbi.1994.1130. [DOI] [PubMed] [Google Scholar]
- Wilson K. P., Shewchuk L. M., Brennan R. G., Otsuka A. J., Matthews B. W. Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9257–9261. doi: 10.1073/pnas.89.19.9257. [DOI] [PMC free article] [PubMed] [Google Scholar]