Abstract
We have previously reported the purification and characterization of the peroxisome proliferator-induced very-long-chain acyl-CoA thioesterase (MTE-I) from rat liver mitochondria [L.T. Svensson, S.E. H. Alexson and J.K. Hiltunen (1995) J. Biol. Chem. 270, 12177-12183]. Here we describe the cloning of the corresponding cDNA. One full-length clone was isolated that contained an open reading frame of 1359 bp encoding a polypeptide with a calculated molecular mass of 49707 Da. The deduced amino acid sequence contains a putative mitochondrial leader peptide of 42 residues. Expression of the cDNA in Chinese hamster ovary cells, followed by immunofluorescence, immunoelectron microscopy and Western blot analyses, showed that the product was targeted to mitochondria and processed to a mature protein of 45 kDa, which is similar to the molecular mass of the protein isolated from rat liver mitochondria. The recombinant enzyme showed the same acyl-CoA chain-length specificity as the isolated rat liver enzyme. Sequence analysis showed no similarity to known esterases, but a high degree (approx. 40%) of identity with bile acid-CoA:amino acid N-acyltransferase cloned from human and rat liver. A putative active-site serine motif (Gly-Xaa-Ser-Xaa-Gly) of several carboxylesterases and lipases was identified. Western and Northern blot analyses showed that MTE-I is constitutively expressed in heart and is strongly induced in liver by feeding rats with di(2-ethylhexyl)phthalate, a peroxisome proliferator, suggesting a role for the enzyme in lipid metabolism.
Full Text
The Full Text of this article is available as a PDF (634.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexson S. E., Mentlein R., Wernstedt C., Hellman U. Isolation and characterization of microsomal acyl-CoA thioesterase. A member of the rat liver microsomal carboxylesterase multi-gene family. Eur J Biochem. 1993 Jun 15;214(3):719–727. doi: 10.1111/j.1432-1033.1993.tb17973.x. [DOI] [PubMed] [Google Scholar]
- Aoyama T., Ueno I., Kamijo T., Hashimoto T. Rat very-long-chain acyl-CoA dehydrogenase, a novel mitochondrial acyl-CoA dehydrogenase gene product, is a rate-limiting enzyme in long-chain fatty acid beta-oxidation system. cDNA and deduced amino acid sequence and distinct specificities of the cDNA-expressed protein. J Biol Chem. 1994 Jul 22;269(29):19088–19094. [PubMed] [Google Scholar]
- Berge R. K., Farstad M. Dual localization of long-chain acyl-CoA hydrolase in rat liver: one in the microsomes and one in the mitochondrial matrix. Eur J Biochem. 1979 Mar 15;95(1):89–97. doi: 10.1111/j.1432-1033.1979.tb12942.x. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Flatmark T., Osmundsen H. Enhancement of long-chain acyl-CoA hydrolase activity in peroxisomes and mitochondria of rat liver by peroxisomal proliferators. Eur J Biochem. 1984 Jun 15;141(3):637–644. doi: 10.1111/j.1432-1033.1984.tb08239.x. [DOI] [PubMed] [Google Scholar]
- Broustas C. G., Hajra A. K. Purification, properties, and specificity of rat brain cytosolic fatty acyl coenzyme A hydrolase. J Neurochem. 1995 May;64(5):2345–2353. doi: 10.1046/j.1471-4159.1995.64052345.x. [DOI] [PubMed] [Google Scholar]
- Broustas C. G., Larkins L. K., Uhler M. D., Hajra A. K. Molecular cloning and expression of cDNA encoding rat brain cytosolic acyl-coenzyme A thioester hydrolase. J Biol Chem. 1996 May 3;271(18):10470–10476. doi: 10.1074/jbc.271.18.10470. [DOI] [PubMed] [Google Scholar]
- Camp L. A., Verkruyse L. A., Afendis S. J., Slaughter C. A., Hofmann S. L. Molecular cloning and expression of palmitoyl-protein thioesterase. J Biol Chem. 1994 Sep 16;269(37):23212–23219. [PubMed] [Google Scholar]
- Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
- Czuba B., Vessey D. A. Kinetic characterization of cholyl-CoA glycine-taurine N-acyltransferase from bovine liver. J Biol Chem. 1980 Jun 10;255(11):5296–5299. [PubMed] [Google Scholar]
- Czuba B., Vessey D. A. Structural characterization of cholylcoenzyme A:glycine-taurine N-acyltransferase and a covalent substrate intermediate. J Biol Chem. 1986 May 15;261(14):6260–6263. [PubMed] [Google Scholar]
- Engberg S. T., Aoyama T., Alexson S. E., Hashimoto T., Svensson L. T. Peroxisome proliferator-induced acyl-CoA thioesterase from rat liver cytosol: molecular cloning and functional expression in Chinese hamster ovary cells. Biochem J. 1997 Apr 15;323(Pt 2):525–531. doi: 10.1042/bj3230525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falany C. N., Johnson M. R., Barnes S., Diasio R. B. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem. 1994 Jul 29;269(30):19375–19379. [PubMed] [Google Scholar]
- Furutani M., Arii S., Higashitsuji H., Mise M., Fukumoto M., Takano S., Nakayama H., Imamura M., Fujita J. Reduced expression of kan-1 (encoding putative bile acid-CoA-amino acid N-acyltransferase) mRNA in livers of rats after partial hepatectomy and during sepsis. Biochem J. 1995 Oct 1;311(Pt 1):203–208. doi: 10.1042/bj3110203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gavel Y., von Heijne G. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng. 1990 Oct;4(1):33–37. doi: 10.1093/protein/4.1.33. [DOI] [PubMed] [Google Scholar]
- Goñi F. M., Requero M. A., Alonso A. Palmitoylcarnitine, a surface-active metabolite. FEBS Lett. 1996 Jul 15;390(1):1–5. doi: 10.1016/0014-5793(96)00603-5. [DOI] [PubMed] [Google Scholar]
- Izai K., Uchida Y., Orii T., Yamamoto S., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J Biol Chem. 1992 Jan 15;267(2):1027–1033. [PubMed] [Google Scholar]
- Kamijo T., Aoyama T., Miyazaki J., Hashimoto T. Molecular cloning of the cDNAs for the subunits of rat mitochondrial fatty acid beta-oxidation multienzyme complex. Structural and functional relationships to other mitochondrial and peroxisomal beta-oxidation enzymes. J Biol Chem. 1993 Dec 15;268(35):26452–26460. [PubMed] [Google Scholar]
- Kawashima Y., Katoh H., Kozuka H. Differential effects of altered hormonal state on the induction of acyl-CoA hydrolases and peroxisomal beta-oxidation by clofibric acid. Biochim Biophys Acta. 1983 Feb 7;750(2):365–372. doi: 10.1016/0005-2760(83)90041-3. [DOI] [PubMed] [Google Scholar]
- Kawashima Y., Katoh H., Kozuka H. Sex-related difference in the effect of clofibric acid on induction of two novel long-chain acyl-CoA hydrolases in rat liver. Biochim Biophys Acta. 1982 Jul 20;712(1):48–56. [PubMed] [Google Scholar]
- Lehner R., Kuksis A. Purification of an acyl-CoA hydrolase from rat intestinal microsomes. A candidate acyl-enzyme intermediate in glycerolipid acylation. J Biol Chem. 1993 Nov 25;268(33):24726–24733. [PubMed] [Google Scholar]
- Mentlein R., Heymann E. Hydrolysis of ester- and amide-type drugs by the purified isoenzymes of nonspecific carboxylesterase from rat liver. Biochem Pharmacol. 1984 Apr 15;33(8):1243–1248. doi: 10.1016/0006-2952(84)90176-x. [DOI] [PubMed] [Google Scholar]
- Miyazawa S., Furuta S., Hashimoto T. Induction of a novel long-chain acyl-CoA hydrolase in rat liver by administration of peroxisome proliferators. Eur J Biochem. 1981 Jul;117(2):425–430. doi: 10.1111/j.1432-1033.1981.tb06356.x. [DOI] [PubMed] [Google Scholar]
- Miyazawa S., Hashimoto T., Yokota S. Identity of long-chain acyl-coenzyme A synthetase of microsomes, mitochondria, and peroxisomes in rat liver. J Biochem. 1985 Sep;98(3):723–733. doi: 10.1093/oxfordjournals.jbchem.a135330. [DOI] [PubMed] [Google Scholar]
- Naggert J., Williams B., Cashman D. P., Smith S. Cloning and sequencing of the medium-chain S-acyl fatty acid synthetase thioester hydrolase cDNA from rat mammary gland. Biochem J. 1987 Apr 15;243(2):597–601. doi: 10.1042/bj2430597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naggert J., Witkowski A., Mikkelsen J., Smith S. Molecular cloning and sequencing of a cDNA encoding the thioesterase domain of the rat fatty acid synthetase. J Biol Chem. 1988 Jan 25;263(3):1146–1150. [PubMed] [Google Scholar]
- Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niidome T., Kitada S., Shimokata K., Ogishima T., Ito A. Arginine residues in the extension peptide are required for cleavage of a precursor by mitochondrial processing peptidase. Demonstration using synthetic peptide as a substrate. J Biol Chem. 1994 Oct 7;269(40):24719–24722. [PubMed] [Google Scholar]
- Niwa H., Yamamura K., Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991 Dec 15;108(2):193–199. doi: 10.1016/0378-1119(91)90434-d. [DOI] [PubMed] [Google Scholar]
- Robbi M., Van Schaftingen E., Beaufay H. Cloning and sequencing of rat liver carboxylesterase ES-4 (microsomal palmitoyl-CoA hydrolase). Biochem J. 1996 Feb 1;313(Pt 3):821–826. doi: 10.1042/bj3130821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki H., Watanabe M., Fujino T., Yamamoto T. Multiple promoters in rat acyl-CoA synthetase gene mediate differential expression of multiple transcripts with 5'-end heterogeneity. J Biol Chem. 1995 Apr 21;270(16):9676–9682. doi: 10.1074/jbc.270.16.9676. [DOI] [PubMed] [Google Scholar]
- Svensson L. T., Alexson S. E., Hiltunen J. K. Very long chain and long chain acyl-CoA thioesterases in rat liver mitochondria. Identification, purification, characterization, and induction by peroxisome proliferators. J Biol Chem. 1995 May 19;270(20):12177–12183. doi: 10.1074/jbc.270.20.12177. [DOI] [PubMed] [Google Scholar]
- Svensson L. T., Wilcke M., Alexson S. E. Peroxisome proliferators differentially regulate long-chain acyl-CoA thioesterases in rat liver. Eur J Biochem. 1995 Jun 1;230(2):813–820. doi: 10.1111/j.1432-1033.1995.0813h.x. [DOI] [PubMed] [Google Scholar]
- Usuda N., Reddy M. K., Hashimoto T., Rao M. S., Reddy J. K. Tissue specificity and species differences in the distribution of urate oxidase in peroxisomes. Lab Invest. 1988 Jan;58(1):100–111. [PubMed] [Google Scholar]
- Warden C. H., Mehrabian M., He K. Y., Yoon M. Y., Diep A., Xia Y. R., Wen P. Z., Svenson K. L., Sparkes R. S., Lusis A. J. Linkage mapping of 40 randomly isolated liver cDNA clones in the mouse. Genomics. 1993 Nov;18(2):295–307. doi: 10.1006/geno.1993.1469. [DOI] [PubMed] [Google Scholar]
- Wilcke M., Alexson S. E. Characterization of acyl-CoA thioesterase activity in isolated rat liver peroxisomes. Partial purification and characterization of a long-chain acyl-CoA thioesterase. Eur J Biochem. 1994 Jun 15;222(3):803–811. doi: 10.1111/j.1432-1033.1994.tb18927.x. [DOI] [PubMed] [Google Scholar]
- Witkowski A., Naggert J., Wessa B., Smith S. A catalytic role for histidine 237 in rat mammary gland thioesterase II. J Biol Chem. 1991 Oct 5;266(28):18514–18519. [PubMed] [Google Scholar]
- Witkowski A., Witkowska H. E., Smith S. Reengineering the specificity of a serine active-site enzyme. Two active-site mutations convert a hydrolase to a transferase. J Biol Chem. 1994 Jan 7;269(1):379–383. [PubMed] [Google Scholar]
- Yamada J., Matsumoto I., Furihata T., Sakuma M., Suga T. Purification and properties of long-chain acyl-CoA hydrolases from the liver cytosol of rats treated with peroxisome proliferator. Arch Biochem Biophys. 1994 Jan;308(1):118–125. doi: 10.1006/abbi.1994.1017. [DOI] [PubMed] [Google Scholar]
- Yan B., Yang D., Brady M., Parkinson A. Rat kidney carboxylesterase. Cloning, sequencing, cellular localization, and relationship to rat liver hydrolase. J Biol Chem. 1994 Nov 25;269(47):29688–29696. [PubMed] [Google Scholar]
- von Heijne G. Signals for protein targeting into and across membranes. Subcell Biochem. 1994;22:1–19. doi: 10.1007/978-1-4615-2401-4_1. [DOI] [PubMed] [Google Scholar]
