Abstract
To increase the folding efficiency of the insulin precursor and the production yield of insulin, we have designed a mini-proinsulin (M2PI) having the central C-peptide region replaced with a sequence forming a reverse turn. The mini-proinsulin was fused at the N-terminus to a 21-residue fusion partner containing a His10 tag for affinity purification. The gene for the fusion protein was inserted downstream of the T7 promoter of the expression plasmid pET-3a, and the fusion proteins were produced as inclusion bodies in the Escherichia coli cytoplasm at levels up to 25% of the total cell protein. The protein was sulphonated, cleaved by CNBr and the M2PI mini-proinsulin was purified using ion-exchange chromatography. The refolding yield of M2PI was 20-40% better than that of proinsulin studied at the same molar concentrations, indicating that the short turn-forming sequence is more effective in the refolding process than the much longer C-peptide. Native human insulin was successfully generated by subsequent enzymic conversion of mini-proinsulin. The mini-proinsulin exhibited high receptor-binding activity, about 50% as potent as insulin, suggesting that this single-chained mini-proinsulin may provide a foundation in understanding the receptor-bound structure of insulin as well as the role of C-peptide in the folding and activity of proinsulin.
Full Text
The Full Text of this article is available as a PDF (401.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chan S. J., Weiss J., Konrad M., White T., Bahl C., Yu S. D., Marks D., Steiner D. F. Biosynthesis and periplasmic segregation of human proinsulin in Escherichia coli. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5401–5405. doi: 10.1073/pnas.78.9.5401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowley D. J., Mackin R. B. Expression, purification and characterization of recombinant human proinsulin. FEBS Lett. 1997 Feb 3;402(2-3):124–130. doi: 10.1016/s0014-5793(96)01511-6. [DOI] [PubMed] [Google Scholar]
- Cutfield J., Cutfield S., Dodson E., Dodson G., Hodgkin D., Reynolds C. Evidence concerning insulin activity from the structure of a cross-linked derivative. Hoppe Seylers Z Physiol Chem. 1981 Jun;362(6):755–761. doi: 10.1515/bchm2.1981.362.1.755. [DOI] [PubMed] [Google Scholar]
- Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Bing X., Markussen J. X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue. J Mol Biol. 1991 Jul 20;220(2):425–433. doi: 10.1016/0022-2836(91)90022-x. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Cross K. J., Houghten R. A., Wilson I. A., Wright P. E., Lerner R. A. The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn. Nature. 1985 Dec 5;318(6045):480–483. doi: 10.1038/318480a0. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Rance M., Houghten R. A., Lerner R. A., Wright P. E. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol. 1988 May 5;201(1):161–200. doi: 10.1016/0022-2836(88)90446-9. [DOI] [PubMed] [Google Scholar]
- Gliemann J., Gammeltoft S. The biological activity and the binding affinity of modified insulins determined on isolated rat fat cells. Diabetologia. 1974 Apr;10(2):105–113. doi: 10.1007/BF01219665. [DOI] [PubMed] [Google Scholar]
- Grau U. Fingerprint analysis of insulin and proinsulins. Diabetes. 1985 Nov;34(11):1174–1180. doi: 10.2337/diab.34.11.1174. [DOI] [PubMed] [Google Scholar]
- Gross D. J., Villa-Komaroff L., Kahn C. R., Weir G. C., Halban P. A. Deletion of a highly conserved tetrapeptide sequence of the proinsulin connecting peptide (C-peptide) inhibits proinsulin to insulin conversion by transfected pituitary corticotroph (AtT20) cells. J Biol Chem. 1989 Dec 25;264(36):21486–21490. [PubMed] [Google Scholar]
- Heath W. F., Belagaje R. M., Brooke G. S., Chance R. E., Hoffmann J. A., Long H. B., Reams S. G., Roundtree C., Shaw W. N., Slieker L. J. (A-C-B) human proinsulin, a novel insulin agonist and intermediate in the synthesis of biosynthetic human insulin. J Biol Chem. 1992 Jan 5;267(1):419–425. [PubMed] [Google Scholar]
- Kemmler W., Peterson J. D., Steiner D. F. Studies on the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and carboxypeptidase B. J Biol Chem. 1971 Nov 25;246(22):6786–6791. [PubMed] [Google Scholar]
- Kobayashi M., Sasaoka T., Sugibayashi M., Iwanishi M., Shigeta Y. Receptor binding and biologic activity of biosynthetic human insulin and mini-proinsulin produced by recombinant gene technology. Diabetes Res Clin Pract. 1989 Jun 20;7(1):25–28. doi: 10.1016/0168-8227(89)90040-5. [DOI] [PubMed] [Google Scholar]
- Matouschek A., Kellis J. T., Jr, Serrano L., Bycroft M., Fersht A. R. Transient folding intermediates characterized by protein engineering. Nature. 1990 Aug 2;346(6283):440–445. doi: 10.1038/346440a0. [DOI] [PubMed] [Google Scholar]
- Peavy D. E., Brunner M. R., Duckworth W. C., Hooker C. S., Frank B. H. Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin. Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats. J Biol Chem. 1985 Nov 15;260(26):13989–13994. [PubMed] [Google Scholar]
- Pollet R. J., Standaert M. L., Haase B. A. Insulin binding to the human lymphocyte receptor. Evaluation of the negative cooperativity model. J Biol Chem. 1977 Aug 25;252(16):5828–5834. [PubMed] [Google Scholar]
- Rholam M., Nicolas P., Cohen P. Precursors for peptide hormones share common secondary structures forming features at the proteolytic processing sites. FEBS Lett. 1986 Oct 20;207(1):1–6. doi: 10.1016/0014-5793(86)80002-3. [DOI] [PubMed] [Google Scholar]
- Roth J. Assay of peptide hormones using cell receptors: application to insulin and to human growth hormone. Methods Enzymol. 1975;37:66–82. doi: 10.1016/s0076-6879(75)37006-7. [DOI] [PubMed] [Google Scholar]
- Shin H. C., Merutka G., Waltho J. P., Wright P. E., Dyson H. J. Peptide models of protein folding initiation sites. 2. The G-H turn region of myoglobin acts as a helix stop signal. Biochemistry. 1993 Jun 29;32(25):6348–6355. doi: 10.1021/bi00076a007. [DOI] [PubMed] [Google Scholar]
- Shin H. C., Stuart B., McFarlane E. F. Conformation of an antigenic determinant for experimental autoimmune neuritis. Biochem Biophys Res Commun. 1996 Jul 5;224(1):5–9. doi: 10.1006/bbrc.1996.0975. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Thim L., Hansen M. T., Norris K., Hoegh I., Boel E., Forstrom J., Ammerer G., Fiil N. P. Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6766–6770. doi: 10.1073/pnas.83.18.6766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wetzel R., Kleid D. G., Crea R., Heyneker H. L., Yansura D. G., Hirose T., Kraszewski A., Riggs A. D., Itakura K., Goeddel D. V. Expression in Escherichia coli of a chemically synthesized gene for a "mini-C" analog of human proinsulin. Gene. 1981 Dec;16(1-3):63–71. doi: 10.1016/0378-1119(81)90061-5. [DOI] [PubMed] [Google Scholar]
