Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 1;329(Pt 3):675–679. doi: 10.1042/bj3290675

Synthesis and secretion of the pancreatic-type carboxyl ester lipase by human endothelial cells.

F Li 1, D Y Hui 1
PMCID: PMC1219092  PMID: 9445398

Abstract

Human aortic extracts contain significant cholesteryl ester hydrolytic activity. The enzymic activity was shown to be activated by trihydroxylated bile salt, but not by dihydroxylated bile salt. Monospecific antibodies prepared against rat pancreatic carboxyl ester lipase (CEL, cholesterol esterase) immunoprecipitated cholesteryl ester hydrolytic activity from human aorta, demonstrating that the neutral CEL in aorta is highly similar to and probably identical with the pancreatic enzyme. Reverse transcriptase PCR amplification of mRNA from human aortic endothelial cells revealed de novo synthesis of the pancreatic-type CEL by these cells. Preincubating human aortic endothelial cells with oxidized or native low-density lipoprotein resulted in an 8- and 3-fold increase in CEL activity secreted into the culture medium respectively. A potential physiological role for the endothelial CEL was demonstrated by studies showing its ability to confer partial protection against the cytotoxic effects of lysophosphatidylcholine. The protective effect of CEL is related to its bile-salt-independent lysophospholipase activity. However, CEL hydrolysis of lysophosphatidylcholine can be inhibited by excess cholesterol. Taken together, these results indicate that pancreatic-type CEL is synthesized by cells lining the vessel wall. Moreover, vascular CEL may interact with cholesterol and oxidized lipoproteins to modulate the progression of atherosclerosis.

Full Text

The Full Text of this article is available as a PDF (244.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brodt-Eppley J., White P., Jenkins S., Hui D. Y. Plasma cholesterol esterase level is a determinant for an atherogenic lipoprotein profile in normolipidemic human subjects. Biochim Biophys Acta. 1995 Oct 17;1272(2):69–72. doi: 10.1016/0925-4439(95)00083-g. [DOI] [PubMed] [Google Scholar]
  2. Camulli E. D., Linke M. J., Brockman H. L., Hui D. Y. Identity of a cytosolic neutral cholesterol esterase in rat liver with the bile salt stimulated cholesterol esterase in pancreas. Biochim Biophys Acta. 1989 Sep 25;1005(2):177–182. doi: 10.1016/0005-2760(89)90184-7. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. DiPersio L. P., Kissel J. A., Hui D. Y. Purification of pancreatic cholesterol esterase expressed in recombinant baculovirus-infected Sf9 cells. Protein Expr Purif. 1992 Apr;3(2):114–120. doi: 10.1016/s1046-5928(05)80094-4. [DOI] [PubMed] [Google Scholar]
  5. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hajjar D. P., Minick C. R., Fowler S. Arterial neutral cholesteryl esterase. A hormone-sensitive enzyme distinct from lysosomal cholesteryl esterase. J Biol Chem. 1983 Jan 10;258(1):192–198. [PubMed] [Google Scholar]
  7. Harrison E. H. Bile salt-dependent, neutral cholesteryl ester hydrolase of rat liver: possible relationship with pancreatic cholesteryl ester hydrolase. Biochim Biophys Acta. 1988 Nov 4;963(1):28–34. doi: 10.1016/0005-2760(88)90334-7. [DOI] [PubMed] [Google Scholar]
  8. Hernell O., Bläckberg L. Human milk bile salt-stimulated lipase: functional and molecular aspects. J Pediatr. 1994 Nov;125(5 Pt 2):S56–S61. doi: 10.1016/s0022-3476(06)80737-7. [DOI] [PubMed] [Google Scholar]
  9. Hernell O., Olivecrona T. Human milk lipases. II. Bile salt-stimulated lipase. Biochim Biophys Acta. 1974 Nov 18;369(2):234–244. doi: 10.1016/0005-2760(74)90254-9. [DOI] [PubMed] [Google Scholar]
  10. Holtsberg F. W., Ozgur L. E., Garsetti D. E., Myers J., Egan R. W., Clark M. A. Presence in human eosinophils of a lysophospholipase similar to that found in the pancreas. Biochem J. 1995 Jul 1;309(Pt 1):141–144. doi: 10.1042/bj3090141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howles P. N., Carter C. P., Hui D. Y. Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J Biol Chem. 1996 Mar 22;271(12):7196–7202. doi: 10.1074/jbc.271.12.7196. [DOI] [PubMed] [Google Scholar]
  12. Hui D. Y., Kissel J. A. Sequence identity between human pancreatic cholesterol esterase and bile salt-stimulated milk lipase. FEBS Lett. 1990 Dec 10;276(1-2):131–134. doi: 10.1016/0014-5793(90)80525-n. [DOI] [PubMed] [Google Scholar]
  13. Hui D. Y. Molecular biology of enzymes involved with cholesterol ester hydrolysis in mammalian tissues. Biochim Biophys Acta. 1996 Sep 6;1303(1):1–14. doi: 10.1016/0005-2760(96)00085-9. [DOI] [PubMed] [Google Scholar]
  14. Hyun J., Kothari H., Herm E., Mortenson J., Treadwell C. R., Vahouny G. V. Purification and properties of pancreatic juice cholesterol esterase. J Biol Chem. 1969 Apr 10;244(7):1937–1945. [PubMed] [Google Scholar]
  15. Innerarity T. L., Pitas R. E., Mahley R. W. Lipoprotein-receptor interactions. Methods Enzymol. 1986;129:542–565. doi: 10.1016/0076-6879(86)29091-6. [DOI] [PubMed] [Google Scholar]
  16. Kissel J. A., Fontaine R. N., Turck C. W., Brockman H. L., Hui D. Y. Molecular cloning and expression of cDNA for rat pancreatic cholesterol esterase. Biochim Biophys Acta. 1989 Nov 28;1006(2):227–236. doi: 10.1016/0005-2760(89)90201-4. [DOI] [PubMed] [Google Scholar]
  17. Kugiyama K., Kerns S. A., Morrisett J. D., Roberts R., Henry P. D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990 Mar 8;344(6262):160–162. doi: 10.1038/344160a0. [DOI] [PubMed] [Google Scholar]
  18. Kumar B. V., Aleman-Gomez J. A., Colwell N., Lopez-Candales A., Bosner M. S., Spilburg C. A., Lowe M., Lange L. G. Structure of the human pancreatic cholesterol esterase gene. Biochemistry. 1992 Jul 7;31(26):6077–6081. doi: 10.1021/bi00141a017. [DOI] [PubMed] [Google Scholar]
  19. Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Li F., Huang Y., Hui D. Y. Bile salt stimulated cholesterol esterase increases uptake of high density lipoprotein-associated cholesteryl esters by HepG2 cells. Biochemistry. 1996 May 28;35(21):6657–6663. doi: 10.1021/bi952313q. [DOI] [PubMed] [Google Scholar]
  22. Lindström M. B., Sternby B., Borgström B. Concerted action of human carboxyl ester lipase and pancreatic lipase during lipid digestion in vitro: importance of the physicochemical state of the substrate. Biochim Biophys Acta. 1988 Mar 25;959(2):178–184. doi: 10.1016/0005-2760(88)90029-x. [DOI] [PubMed] [Google Scholar]
  23. Lombardo D., Guy O., Figarella C. Purification and characterization of a carboxyl ester hydrolase from human pancreatic juice. Biochim Biophys Acta. 1978 Nov 10;527(1):142–149. doi: 10.1016/0005-2744(78)90263-2. [DOI] [PubMed] [Google Scholar]
  24. Momsen W. E., Brockman H. L. Purification and characterization of cholesterol esterase from porcine pancreas. Biochim Biophys Acta. 1976 Jan 18;486(1):103–113. doi: 10.1016/0005-2760(77)90074-1. [DOI] [PubMed] [Google Scholar]
  25. Parthasarathy S., Barnett J. Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apoprotein B-100. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9741–9745. doi: 10.1073/pnas.87.24.9741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parthasarathy S., Steinbrecher U. P., Barnett J., Witztum J. L., Steinberg D. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proc Natl Acad Sci U S A. 1985 May;82(9):3000–3004. doi: 10.1073/pnas.82.9.3000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Portman O. W., Alexander M. Lysophosphatidylcholine concentrations and metabolism in aortic intima plus inner media: effect of nutritionally induced atherosclerosis. J Lipid Res. 1969 Mar;10(2):158–165. [PubMed] [Google Scholar]
  28. Quinn M. T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2805–2809. doi: 10.1073/pnas.85.8.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reue K., Zambaux J., Wong H., Lee G., Leete T. H., Ronk M., Shively J. E., Sternby B., Borgström B., Ameis D. cDNA cloning of carboxyl ester lipase from human pancreas reveals a unique proline-rich repeat unit. J Lipid Res. 1991 Feb;32(2):267–276. [PubMed] [Google Scholar]
  30. Sakai M., Miyazaki A., Hakamata H., Sasaki T., Yui S., Yamazaki M., Shichiri M., Horiuchi S. Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J Biol Chem. 1994 Dec 16;269(50):31430–31435. [PubMed] [Google Scholar]
  31. Shamir R., Johnson W. J., Morlock-Fitzpatrick K., Zolfaghari R., Li L., Mas E., Lombardo D., Morel D. W., Fisher E. A. Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro. J Clin Invest. 1996 Apr 1;97(7):1696–1704. doi: 10.1172/JCI118596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Traber M. G., Goldberg I., Davidson E., Lagmay N., Kayden H. J. Vitamin E uptake by human intestinal cells during lipolysis in vitro. Gastroenterology. 1990 Jan;98(1):96–103. doi: 10.1016/0016-5085(90)91296-i. [DOI] [PubMed] [Google Scholar]
  33. Wang C. S., Hartsuck J. A. Bile salt-activated lipase. A multiple function lipolytic enzyme. Biochim Biophys Acta. 1993 Feb 10;1166(1):1–19. doi: 10.1016/0005-2760(93)90277-g. [DOI] [PubMed] [Google Scholar]
  34. Zolfaghari R., Harrison E. H., Han J. H., Rutter W. J., Fisher E. A. Tissue and species differences in bile salt-dependent neutral cholesteryl ester hydrolase activity and gene expression. Arterioscler Thromb. 1992 Mar;12(3):295–301. doi: 10.1161/01.atv.12.3.295. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES