Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):13–20. doi: 10.1042/bj3300013

Purification and characterization of N-glycanase, a concanavalin A binding protein from jackbean (Canavalia ensiformis).

P S Sheldon 1, J N Keen 1, D J Bowles 1
PMCID: PMC1219101  PMID: 9461484

Abstract

Removal of the N-glycan from the concanavalin A (Con A) glycoprotein precursor is a key step in its conversion into an active lectin. N-Glycanase (EC 3.5.1.52), the enzyme from jackbean catalysing this process, has been purified to homogeneity as judged by native PAGE. One of the purification steps is binding of the enzymic activity to Con A-Sepharose and its elution by methyl alpha-mannoside. On SDS/PAGE the principal components were found to be 78 kDa, 74 kDa, 54 kDa, 32 kDa and 30 kDa polypeptides. These did not react with Con A on an affinity blot. Cleveland mapping indicated that some of these polypeptides had related primary structures. The enzyme has a broad pH optimum in the region of 5.0.

Full Text

The Full Text of this article is available as a PDF (659.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J., Haris P. I., Lee D. C., Chapman D. Conformational changes in concanavalin A associated with demetallization and alpha-methylmannose binding studied by Fourier transform infrared spectroscopy. Biochim Biophys Acta. 1987 Nov 5;916(1):5–12. doi: 10.1016/0167-4838(87)90204-4. [DOI] [PubMed] [Google Scholar]
  2. Arrondo J. L., Young N. M., Mantsch H. H. The solution structure of concanavalin A probed by FT-IR spectroscopy. Biochim Biophys Acta. 1988 Feb 10;952(3):261–268. doi: 10.1016/0167-4838(88)90125-2. [DOI] [PubMed] [Google Scholar]
  3. Basse C. W., Bock K., Boller T. Elicitors and suppressors of the defense response in tomato cells. Purification and characterization of glycopeptide elicitors and glycan suppressors generated by enzymatic cleavage of yeast invertase. J Biol Chem. 1992 May 25;267(15):10258–10265. [PubMed] [Google Scholar]
  4. Basse C. W., Boller T. Glycopeptide elicitors of stress responses in tomato cells: N-linked glycans are essential for activity but act as suppressors of the same activity when released from the glycopeptides. Plant Physiol. 1992 Apr;98(4):1239–1247. doi: 10.1104/pp.98.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berger S., Menudier A., Julien R., Karamanos Y. Do de-N-glycosylation enzymes have an important role in plant cells? Biochimie. 1995;77(9):751–760. doi: 10.1016/0300-9084(96)88193-4. [DOI] [PubMed] [Google Scholar]
  6. Berger S., Menudier A., Julien R., Karamanos Y. Endo-N-acetyl-beta-D-glucosaminidase and peptide-N4-(N-acetyl-glucosaminyl) asparagine amidase activities during germination of Raphanus sativus. Phytochemistry. 1995 Jun;39(3):481–487. doi: 10.1016/0031-9422(95)00001-n. [DOI] [PubMed] [Google Scholar]
  7. Bowles D. J., Marcus S. E., Pappin D. J., Findlay J. B., Eliopoulos E., Maycox P. R., Burgess J. Posttranslational processing of concanavalin A precursors in jackbean cotyledons. J Cell Biol. 1986 Apr;102(4):1284–1297. doi: 10.1083/jcb.102.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  9. Carrington D. M., Auffret A., Hanke D. E. Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature. 1985 Jan 3;313(5997):64–67. doi: 10.1038/313064a0. [DOI] [PubMed] [Google Scholar]
  10. Chrispeels M. J., Hartl P. M., Sturm A., Faye L. Characterization of the endoplasmic reticulum-associated precursor of concanavalin A. Partial amino acid sequence and lectin activity. J Biol Chem. 1986 Aug 5;261(22):10021–10024. [PubMed] [Google Scholar]
  11. Cleveland D. W. Peptide mapping in one dimension by limited proteolysis of sodium dodecyl sulfate-solubilized proteins. Methods Enzymol. 1983;96:222–229. doi: 10.1016/s0076-6879(83)96020-2. [DOI] [PubMed] [Google Scholar]
  12. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  13. Derewenda Z., Yariv J., Helliwell J. R., Kalb A. J., Dodson E. J., Papiz M. Z., Wan T., Campbell J. The structure of the saccharide-binding site of concanavalin A. EMBO J. 1989 Aug;8(8):2189–2193. doi: 10.1002/j.1460-2075.1989.tb08341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Faye L., Chrispeels M. J. Characterization of N-linked oligosaccharides by affinoblotting with concanavalin A-peroxidase and treatment of the blots with glycosidases. Anal Biochem. 1985 Aug 15;149(1):218–224. doi: 10.1016/0003-2697(85)90498-1. [DOI] [PubMed] [Google Scholar]
  15. Hassing G. S., Goldstein I. J. Ultraviolet difference spectral studies on concanavalin A. Carbohydrate interaction. Eur J Biochem. 1970 Nov;16(3):549–556. doi: 10.1111/j.1432-1033.1970.tb01116.x. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lhernould S., Karamanos Y., Bourgerie S., Strecker G., Julien R., Morvan H. Peptide-N4-(N-acetylglucosaminyl)asparagine amidase (PNGase) activity could explain the occurrence of extracellular xylomannosides in a plant cell suspension. Glycoconj J. 1992 Aug;9(4):191–197. doi: 10.1007/BF00731164. [DOI] [PubMed] [Google Scholar]
  18. Lhernould S., Karamanos Y., Lerouge P., Morvan H. Characterization of the peptide-N4-(N-acetylglucosaminyl) asparagine amidase (PNGase Se) from Silene alba cells. Glycoconj J. 1995 Feb;12(1):94–98. doi: 10.1007/BF00731874. [DOI] [PubMed] [Google Scholar]
  19. Marcus S. E., Burgess J., Maycox P. R., Bowles D. J. A study of maturation events in jackbeans (Canavalia ensiformis). Biochem J. 1984 Aug 15;222(1):265–268. doi: 10.1042/bj2220265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  21. Min W., Dunn A. J., Jones D. H. Non-glycosylated recombinant pro-concanavalin A is active without polypeptide cleavage. EMBO J. 1992 Apr;11(4):1303–1307. doi: 10.1002/j.1460-2075.1992.tb05174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Min W., Jones D. H. In vitro splicing of concanavalin A is catalyzed by asparaginyl endopeptidase. Nat Struct Biol. 1994 Aug;1(8):502–504. doi: 10.1038/nsb0894-502. [DOI] [PubMed] [Google Scholar]
  23. Priem B., Gitti R., Bush C. A., Gross K. C. Structure of ten free N-glycans in ripening tomato fruit. Arabinose is a constituent of a plant N-glycan. Plant Physiol. 1993 Jun;102(2):445–458. doi: 10.1104/pp.102.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Priem B., Gross K. C. Mannosyl- and Xylosyl-Containing Glycans Promote Tomato (Lycopersicon esculentum Mill.) Fruit Ripening. Plant Physiol. 1992 Jan;98(1):399–401. doi: 10.1104/pp.98.1.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Priem B., Morvan H., Gross K. C. Unconjugated N-glycans as a new class of plant oligosaccharins. Biochem Soc Trans. 1994 May;22(2):398–402. doi: 10.1042/bst0220398. [DOI] [PubMed] [Google Scholar]
  26. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  27. Seko A., Kitajima K., Inoue Y., Inoue S. Peptide:N-glycosidase activity found in the early embryos of Oryzias latipes (Medaka fish). The first demonstration of the occurrence of peptide:N-glycosidase in animal cells and its implication for the presence of a de-N-glycosylation system in living organisms. J Biol Chem. 1991 Nov 25;266(33):22110–22114. [PubMed] [Google Scholar]
  28. Sheldon P. S., Bowles D. J. The glycoprotein precursor of concanavalin A is converted to an active lectin by deglycosylation. EMBO J. 1992 Apr;11(4):1297–1301. doi: 10.1002/j.1460-2075.1992.tb05173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sheldon P. S., Keen J. N., Bowles D. J. Post-translational peptide bond formation during concanavalin A processing in vitro. Biochem J. 1996 Dec 15;320(Pt 3):865–870. doi: 10.1042/bj3200865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sugiyama K., Ishihara H., Tejima S., Takahashi N. Demonstration of a new glycopeptidase, from jack-bean meal, acting on aspartylglucosylamine linkages. Biochem Biophys Res Commun. 1983 Apr 15;112(1):155–160. doi: 10.1016/0006-291x(83)91810-7. [DOI] [PubMed] [Google Scholar]
  31. Suzuki T., Kitajima K., Inoue Y., Inoue S. Carbohydrate-binding property of peptide: N-glycanase from mouse fibroblast L-929 cells as evaluated by inhibition and binding experiments using various oligosaccharides. J Biol Chem. 1995 Jun 23;270(25):15181–15186. doi: 10.1074/jbc.270.25.15181. [DOI] [PubMed] [Google Scholar]
  32. Suzuki T., Seko A., Kitajima K., Inoue Y., Inoue S. Purification and enzymatic properties of peptide:N-glycanase from C3H mouse-derived L-929 fibroblast cells. Possible widespread occurrence of post-translational remodification of proteins by N-deglycosylation. J Biol Chem. 1994 Jul 1;269(26):17611–17618. [PubMed] [Google Scholar]
  33. Taga E. M., Waheed A., Van Etten R. L. Structural and chemical characterization of a homogeneous peptide N-glycosidase from almond. Biochemistry. 1984 Feb 28;23(5):815–822. doi: 10.1021/bi00300a006. [DOI] [PubMed] [Google Scholar]
  34. Takahashi T., Nishibe H. Almond glycopeptidase acting on aspartylglycosylamine linkages. Multiplicity and substrate specificity. Biochim Biophys Acta. 1981 Feb 13;657(2):457–467. doi: 10.1016/0005-2744(81)90331-4. [DOI] [PubMed] [Google Scholar]
  35. Tarentino A. L., Gómez C. M., Plummer T. H., Jr Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry. 1985 Aug 13;24(17):4665–4671. doi: 10.1021/bi00338a028. [DOI] [PubMed] [Google Scholar]
  36. Taylor S., Ninjoor V., Dowd D. M., Tappel A. L. Cathepsin B2 measurement by sensitive fluorometric ammonia analysis. Anal Biochem. 1974 Jul;60(1):153–162. doi: 10.1016/0003-2697(74)90140-7. [DOI] [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tretter V., Altmann F., März L. Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1----3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem. 1991 Aug 1;199(3):647–652. doi: 10.1111/j.1432-1033.1991.tb16166.x. [DOI] [PubMed] [Google Scholar]
  39. Trimble R. B., Tarentino A. L. Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans. J Biol Chem. 1991 Jan 25;266(3):1646–1651. [PubMed] [Google Scholar]
  40. Yet M. G., Chin C. C., Wold F. The covalent structure of individual N-linked glycopeptides from ovomucoid and asialofetuin. J Biol Chem. 1988 Jan 5;263(1):111–117. [PubMed] [Google Scholar]
  41. Yet M. G., Wold F. Purification and characterization of two glycopeptide hydrolases from jack beans. J Biol Chem. 1988 Jan 5;263(1):118–122. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES