Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):21–27. doi: 10.1042/bj3300021

Angiotensin II potentiates adrenocorticotrophic hormone-induced cAMP formation in bovine adrenal glomerulosa cells through a capacitative calcium influx.

M M Burnay 1, M B Vallotton 1, A M Capponi 1, M F Rossier 1
PMCID: PMC1219102  PMID: 9461485

Abstract

Angiotensin II (AngII) plays a crucial role in the control of aldosterone biosynthesis in adrenal glomerulosa cells through the stimulation of two distinct Ca2+ entry pathways: (1) opening of voltage-operated calcium channels, and (2) activation of a capacitative Ca2+ entry that is dependent on calcium release from intracellular pools. Adrenocorticotrophic hormone (ACTH), on the other hand, a major hormonal regulator of steroidogenesis, induces an increase in intracellular cAMP through the activation of a G-protein-coupled adenylyl cyclase. Recent studies have demonstrated that the rise in cAMP induced by ACTH can be potentiated by AngII in bovine glomerulosa cells. The aim of the present study was to investigate the mechanism of AngII action on ACTH-induced cAMP production. In primary cultures of bovine glomerulosa cells, we found that AngII (100 nM), which had no effect by itself on cAMP production, significantly potentiated maximal ACTH-induced cAMP formation in the presence of extracellular calcium (1.2 mM). In contrast, in the absence of extracellular calcium, AngII did not affect ACTH-induced cAMP production. These results suggest that calcium entry into the cell plays an important role in the activation of the cyclase by AngII. The inhibition of voltage-operated calcium channels by nicardipine, a dihydropyridine calcium antagonist blocking both low-threshold (T-type) and high-threshold (L-type) Ca2+ channels, did not significantly affect the potentiating effect of AngII. Moreover, the cAMP response to ACTH was insensitive to activation of these Ca2+ channels induced by potassium ions and, even when cytosolic free-calcium concentration ([Ca2+]c) was kept elevated with the Ca2+ ionophore, ionomycin, no stimulation of adenylyl cyclase was observed at concentrations of [Ca2+]c up to 640 nM. In contrast, thapsigargin, an activator of capacitative Ca2+ influx, mimicked the potentiating effect of AngII on ACTH-induced cAMP formation. In agreement with the characteristics of cAMP modulation by Ca2+ in these cells, the presence of type III adenylyl cyclase was observed by immunodetection in bovine glomerulosa cell membranes. In conclusion, these data suggest a tight coupling between the capacitative Ca2+ influx induced upon stimulation by either AngII or thapsigargin and a calcium-sensitive isoform of adenylyl cyclase, probably type III, in bovine glomerulosa cells.

Full Text

The Full Text of this article is available as a PDF (401.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baukal A. J., Hunyady L., Catt K. J., Balla T. Evidence for participation of calcineurin in potentiation of agonist-stimulated cyclic AMP formation by the calcium-mobilizing hormone, angiotensin II. J Biol Chem. 1994 Oct 7;269(40):24546–24549. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Burnay M. M., Python C. P., Vallotton M. B., Capponi A. M., Rossier M. F. Role of the capacitative calcium influx in the activation of steroidogenesis by angiotensin-II in adrenal glomerulosa cells. Endocrinology. 1994 Aug;135(2):751–758. doi: 10.1210/endo.135.2.8033823. [DOI] [PubMed] [Google Scholar]
  4. Cali J. J., Zwaagstra J. C., Mons N., Cooper D. M., Krupinski J. Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem. 1994 Apr 22;269(16):12190–12195. [PubMed] [Google Scholar]
  5. Capponi A. M., Lew P. D., Vallotton M. B. Quantitative analysis of the cytosolic-free-Ca2+-dependency of aldosterone production in bovine adrenal glomerulosa cells. Different requirements for angiotensin II and K+. Biochem J. 1987 Oct 15;247(2):335–340. doi: 10.1042/bj2470335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Capponi A. M., Rossier M. F., Davies E., Vallotton M. B. Calcium stimulates steroidogenesis in permeabilized bovine adrenal cortical cells. J Biol Chem. 1988 Nov 5;263(31):16113–16117. [PubMed] [Google Scholar]
  7. Cheitlin R., Buckley D. I., Ramachandran J. The role of extracellular calcium in corticotropin-stimulated steroidogenesis. J Biol Chem. 1985 May 10;260(9):5323–5327. [PubMed] [Google Scholar]
  8. Chiono M., Mahey R., Tate G., Cooper D. M. Capacitative Ca2+ entry exclusively inhibits cAMP synthesis in C6-2B glioma cells. Evidence that physiologically evoked Ca2+ entry regulates Ca(2+)-inhibitable adenylyl cyclase in non-excitable cells. J Biol Chem. 1995 Jan 20;270(3):1149–1155. doi: 10.1074/jbc.270.3.1149. [DOI] [PubMed] [Google Scholar]
  9. Choi E. J., Xia Z., Storm D. R. Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry. 1992 Jul 21;31(28):6492–6498. doi: 10.1021/bi00143a019. [DOI] [PubMed] [Google Scholar]
  10. Cohen C. J., McCarthy R. T., Barrett P. Q., Rasmussen H. Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2412–2416. doi: 10.1073/pnas.85.7.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cooper D. M., Mons N., Fagan K. Ca(2+)-sensitive adenylyl cyclases. Cell Signal. 1994 Nov;6(8):823–840. doi: 10.1016/0898-6568(94)90016-7. [DOI] [PubMed] [Google Scholar]
  12. Cooper D. M., Mons N., Karpen J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. doi: 10.1038/374421a0. [DOI] [PubMed] [Google Scholar]
  13. Cooper D. M., Yoshimura M., Zhang Y., Chiono M., Mahey R. Capacitative Ca2+ entry regulates Ca(2+)-sensitive adenylyl cyclases. Biochem J. 1994 Feb 1;297(Pt 3):437–440. doi: 10.1042/bj2970437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fagan K. A., Mahey R., Cooper D. M. Functional co-localization of transfected Ca(2+)-stimulable adenylyl cyclases with capacitative Ca2+ entry sites. J Biol Chem. 1996 May 24;271(21):12438–12444. doi: 10.1074/jbc.271.21.12438. [DOI] [PubMed] [Google Scholar]
  15. Fakunding J. L., Chow R., Catt K. J. The role of calcium in the stimulation of aldosterone production by adrenocorticotropin, angiotensin II, and potassium in isolated glomerulosa cells. Endocrinology. 1979 Aug;105(2):327–333. doi: 10.1210/endo-105-2-327. [DOI] [PubMed] [Google Scholar]
  16. Gallo-Payet N., Grazzini E., Côté M., Chouinard L., Chorvátová A., Bilodeau L., Payet M. D., Guillon G. Role of Ca2+ in the action of adrenocorticotropin in cultured human adrenal glomerulosa cells. J Clin Invest. 1996 Jul 15;98(2):460–466. doi: 10.1172/JCI118812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Hanoune J., Pouille Y., Tzavara E., Shen T., Lipskaya L., Miyamoto N., Suzuki Y., Defer N. Adenylyl cyclases: structure, regulation and function in an enzyme superfamily. Mol Cell Endocrinol. 1997 Apr 4;128(1-2):179–194. doi: 10.1016/s0303-7207(97)04013-6. [DOI] [PubMed] [Google Scholar]
  19. Hausdorff W. P., Sekura R. D., Aguilera G., Catt K. J. Control of aldosterone production by angiotensin II is mediated by two guanine nucleotide regulatory proteins. Endocrinology. 1987 Apr;120(4):1668–1678. doi: 10.1210/endo-120-4-1668. [DOI] [PubMed] [Google Scholar]
  20. Jacobowitz O., Chen J., Premont R. T., Iyengar R. Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment. J Biol Chem. 1993 Feb 25;268(6):3829–3832. [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lang U., Vallotton M. B. Angiotensin II but not potassium induces subcellular redistribution of protein kinase C in bovine adrenal glomerulosa cells. J Biol Chem. 1987 Jun 15;262(17):8047–8050. [PubMed] [Google Scholar]
  23. Matsunaga H., Yamashita N., Maruyama Y., Kojima I., Kurokawa K. Evidence for two distinct voltage-gated calcium channel currents in bovine adrenal glomerulosa cells. Biochem Biophys Res Commun. 1987 Dec 31;149(3):1049–1054. doi: 10.1016/0006-291x(87)90514-6. [DOI] [PubMed] [Google Scholar]
  24. Nakahashi Y., Nelson E., Fagan K., Gonzales E., Guillou J. L., Cooper D. M. Construction of a full-length Ca2+-sensitive adenylyl cyclase/aequorin chimera. J Biol Chem. 1997 Jul 18;272(29):18093–18097. doi: 10.1074/jbc.272.29.18093. [DOI] [PubMed] [Google Scholar]
  25. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  26. Python C. P., Laban O. P., Rossier M. F., Vallotton M. B., Capponi A. M. The site of action of Ca2+ in the activation of steroidogenesis: studies in Ca(2+)-clamped bovine adrenal zona-glomerulosa cells. Biochem J. 1995 Jan 15;305(Pt 2):569–576. doi: 10.1042/bj3050569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rohács T., Bagó A., Deák F., Hunyady L., Spät A. Capacitative Ca2+ influx in adrenal glomerulosa cells: possible role in angiotensin II response. Am J Physiol. 1994 Nov;267(5 Pt 1):C1246–C1252. doi: 10.1152/ajpcell.1994.267.5.C1246. [DOI] [PubMed] [Google Scholar]
  28. Rossier M. F., Aptel H. B., Python C. P., Burnay M. M., Vallotton M. B., Capponi A. M. Inhibition of low threshold calcium channels by angiotensin II in adrenal glomerulosa cells through activation of protein kinase C. J Biol Chem. 1995 Jun 23;270(25):15137–15142. doi: 10.1074/jbc.270.25.15137. [DOI] [PubMed] [Google Scholar]
  29. Rossier M. F., Burnay M. M., Vallotton M. B., Capponi A. M. Distinct functions of T- and L-type calcium channels during activation of bovine adrenal glomerulosa cells. Endocrinology. 1996 Nov;137(11):4817–4826. doi: 10.1210/endo.137.11.8895352. [DOI] [PubMed] [Google Scholar]
  30. Rossier M. F., Capponi A. M., Vallotton M. B. Inositol trisphosphate isomers in angiotensin II-stimulated adrenal glomerulosa cells. Mol Cell Endocrinol. 1988 Jun;57(3):163–168. doi: 10.1016/0303-7207(88)90071-8. [DOI] [PubMed] [Google Scholar]
  31. Rossier M. F. Confinement of intracellular calcium signaling in secretory and steroidogenic cells. Eur J Endocrinol. 1997 Oct;137(4):317–325. doi: 10.1530/eje.0.1370317. [DOI] [PubMed] [Google Scholar]
  32. Rossier M. F., Krause K. H., Lew P. D., Capponi A. M., Vallotton M. B. Control of cytosolic free calcium by intracellular organelles in bovine adrenal glomerulosa cells. Effects of sodium and inositol 1,4,5-trisphosphate. J Biol Chem. 1987 Mar 25;262(9):4053–4058. [PubMed] [Google Scholar]
  33. Rossier M. F., Python C. P., Burnay M. M., Schlegel W., Vallotton M. B., Capponi A. M. Thapsigargin inhibits voltage-activated calcium channels in adrenal glomerulosa cells. Biochem J. 1993 Dec 1;296(Pt 2):309–312. doi: 10.1042/bj2960309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rossier M. F., Python C. P., Capponi A. M., Schlegel W., Kwan C. Y., Vallotton M. B. Blocking T-type calcium channels with tetrandrine inhibits steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology. 1993 Mar;132(3):1035–1043. doi: 10.1210/endo.132.3.8382595. [DOI] [PubMed] [Google Scholar]
  35. Spät A., Enyedi P., Hajnóczky G., Hunyady L. Generation and role of calcium signal in adrenal glomerulosa cells. Exp Physiol. 1991 Nov;76(6):859–885. doi: 10.1113/expphysiol.1991.sp003550. [DOI] [PubMed] [Google Scholar]
  36. Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
  37. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wayman G. A., Impey S., Storm D. R. Ca2+ inhibition of type III adenylyl cyclase in vivo. J Biol Chem. 1995 Sep 15;270(37):21480–21486. doi: 10.1074/jbc.270.37.21480. [DOI] [PubMed] [Google Scholar]
  39. Woodcock E. A., Johnston C. I. Inhibition of adenylate cyclase in rat adrenal glomerulosa cells by angiotensin II. Endocrinology. 1984 Jul;115(1):337–341. doi: 10.1210/endo-115-1-337. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES