Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):55–59. doi: 10.1042/bj3300055

Recombinant pseudorabies virus DNase exhibits a RecBCD-like catalytic function.

C Y Hsiang 1, T Y Ho 1, C H Hsiang 1, T J Chang 1
PMCID: PMC1219107  PMID: 9461490

Abstract

The pseudorabies virus (PRV) DNase gene has previously been mapped within the PRV genome. To characterize further the enzymic properties of PRV DNase, this enzyme was expressed in Escherichia coli with the use of a pET expression vector. The protein was purified to homogeneity and assayed for nuclease activity in vitro. Recombinant PRV DNase exhibited an alkaline pH preference and an absolute requirement for Mg2+ ions that could not be replaced by Ca2+ and Na+ ions. Further studies showed that PRV DNase exhibited endonuclease, 5'-exonuclease and 3'-exonuclease activities in both single-stranded and double-stranded DNA. This activity occurred randomly and no significant base preference was demonstrated. The multiple biochemical activities of PRV DNase are similar to the activities of Neurospora crassa endo-exonuclease and E. coli RecBCD, two additional enzymes that are involved in recombination. Taken together, the similarity of action between N. crassa endo-exonuclease, E. coli RecBCD, and PRV DNase suggests that PRV DNase might have a role in the process of recombination that occurs during PRV infection.

Full Text

The Full Text of this article is available as a PDF (316.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bortner C., Hernandez T. R., Lehman I. R., Griffith J. Herpes simplex virus 1 single-strand DNA-binding protein (ICP8) will promote homologous pairing and strand transfer. J Mol Biol. 1993 May 20;231(2):241–250. doi: 10.1006/jmbi.1993.1279. [DOI] [PubMed] [Google Scholar]
  2. Chen J. Y., Liu M. Y., Hsu T. Y., Cho S. M., Yang C. S. Use of bacterially-expressed antigen for detection of antibodies to the EBV-specific deoxyribonuclease in sera from patients with nasopharyngeal carcinoma. J Virol Methods. 1993 Nov;45(1):49–66. doi: 10.1016/0166-0934(93)90139-i. [DOI] [PubMed] [Google Scholar]
  3. Classification and nomenclature of viruses. Fourth report of the International Committee on Taxonomy of Viruses. Intervirology. 1982;17(1-3):1–199. doi: 10.1159/000149278. [DOI] [PubMed] [Google Scholar]
  4. Cotton F. A., Hazen E. E., Jr, Legg M. J. Staphylococcal nuclease: proposed mechanism of action based on structure of enzyme-thymidine 3',5'-bisphosphate-calcium ion complex at 1.5-A resolution. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2551–2555. doi: 10.1073/pnas.76.6.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dean H. J., Cheung A. K. A 3' coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, and UL3 gene homologs and a unique UL3.5 open reading frame. J Virol. 1993 Oct;67(10):5955–5961. doi: 10.1128/jvi.67.10.5955-5961.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoffmann P. J., Cheng Y. C. The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2. I. Purification and characterization of the enzyme. J Biol Chem. 1978 May 25;253(10):3557–3562. [PubMed] [Google Scholar]
  7. Hsiang C. Y., Ho T. Y., Chang T. J. Identification of a pseudorabies virus UL12 (deoxyribonuclease) gene. Gene. 1996 Oct 24;177(1-2):109–113. doi: 10.1016/0378-1119(96)00285-5. [DOI] [PubMed] [Google Scholar]
  8. Hsu M., Berg P. Altering the specificity of restriction endonuclease: effect of replacing Mg2+ with Mn2+. Biochemistry. 1978 Jan 10;17(1):131–138. doi: 10.1021/bi00594a019. [DOI] [PubMed] [Google Scholar]
  9. Jöns A., Mettenleiter T. C. Identification and characterization of pseudorabies virus dUTPase. J Virol. 1996 Feb;70(2):1242–1245. doi: 10.1128/jvi.70.2.1242-1245.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaliman A. V., Boldogköi Z., Fodor I. Large and small subunits of the Aujeszky's disease virus ribonucleotide reductase: nucleotide sequence and putative structure. Biochim Biophys Acta. 1994 Sep 13;1219(1):151–156. doi: 10.1016/0167-4781(94)90259-3. [DOI] [PubMed] [Google Scholar]
  11. Loll P. J., Lattman E. E. Active site mutant Glu-43----Asp in staphylococcal nuclease displays nonlocal structural changes. Biochemistry. 1990 Jul 24;29(29):6866–6873. doi: 10.1021/bi00481a016. [DOI] [PubMed] [Google Scholar]
  12. Loll P. J., Lattman E. E. The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+, and the inhibitor pdTp, refined at 1.65 A. Proteins. 1989;5(3):183–201. doi: 10.1002/prot.340050302. [DOI] [PubMed] [Google Scholar]
  13. Martinez R., Sarisky R. T., Weber P. C., Weller S. K. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J Virol. 1996 Apr;70(4):2075–2085. doi: 10.1128/jvi.70.4.2075-2085.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mettenleiter T. C. Pseudorabies (Aujeszky's disease) virus: state of the art. August 1993. Acta Vet Hung. 1994;42(2-3):153–177. [PubMed] [Google Scholar]
  15. Prieto J., Martín Hernández A. M., Tabarés E. Loss of pseudorabies virus thymidine kinase activity due to a single base mutation and amino acid substitution. J Gen Virol. 1991 Jun;72(Pt 6):1435–1439. doi: 10.1099/0022-1317-72-6-1435. [DOI] [PubMed] [Google Scholar]
  16. Shao L., Rapp L. M., Weller S. K. Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology. 1993 Sep;196(1):146–162. doi: 10.1006/viro.1993.1463. [DOI] [PubMed] [Google Scholar]
  17. Taylor A. F., Schultz D. W., Ponticelli A. S., Smith G. R. RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation-dependence of the cutting. Cell. 1985 May;41(1):153–163. doi: 10.1016/0092-8674(85)90070-4. [DOI] [PubMed] [Google Scholar]
  18. Thomas M. S., Gao M., Knipe D. M., Powell K. L. Association between the herpes simplex virus major DNA-binding protein and alkaline nuclease. J Virol. 1992 Feb;66(2):1152–1161. doi: 10.1128/jvi.66.2.1152-1161.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tsurumi T. Purification and characterization of the DNA-binding activity of the Epstein-Barr virus DNA polymerase accessory protein BMRF1 gene products, as expressed in insect cells by using the baculovirus system. J Virol. 1993 Mar;67(3):1681–1687. doi: 10.1128/jvi.67.3.1681-1687.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weller S. K., Seghatoleslami M. R., Shao L., Rowse D., Carmichael E. P. The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: isolation and characterization of a lacZ insertion mutant. J Gen Virol. 1990 Dec;71(Pt 12):2941–2952. doi: 10.1099/0022-1317-71-12-2941. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES