Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):149–153. doi: 10.1042/bj3300149

Uroporphyria produced in mice by iron and 5-aminolaevulinic acid does not occur in Cyp1a2(-/-) null mutant mice.

P R Sinclair 1, N Gorman 1, T Dalton 1, H S Walton 1, W J Bement 1, J F Sinclair 1, A G Smith 1, D W Nebert 1
PMCID: PMC1219120  PMID: 9461503

Abstract

In the present study we have investigated the putative requirement for the cytochrome P-450 isoform CYP1A2 in murine uroporphyria, by comparing Cyp1a2(-/-) knockout mice with Cyp1a2(+/+) wild-type mice. Uroporphyria was produced by injecting animals with iron-dextran and giving the porphyrin precursor 5-aminolaevulinic acid in the drinking water. Some animals also received 3-methylcholanthrene (MC) to induce hepatic CYP1A2. In both protocols, uroporphyria was elicited by these treatments in the Cyp1a2(+/+) wild-type mice, but not in the null mutant mice. Uroporphyrinogen oxidation activity in hepatic microsomes from untreated Cyp1a2(+/+) mice was 2.5-fold higher than in Cyp1a2(-/-) mice. Treatment with MC increased hepatic CYP1A1 in both mouse lines and hepatic CYP1A2 only in the Cyp1a2(+/+) line, as determined by Western immunoblotting. MC increased hepatic ethoxy- and methoxy-resorufin O-dealkylase activities in both mouse lines, but increased uroporphyrinogen oxidation activity in the Cyp1a2(+/+) wild-type mice only. These results indicate the absolute requirement for hepatic CYP1A2 in causing experimental uroporphyria under the conditions used.

Full Text

The Full Text of this article is available as a PDF (249.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boobis A. R., Nebert D. W., Felton J. S. Comparison of beta-naphthoflavone and 3-methylcholanthrene as inducers of hepatic cytochrome(s) P-448 and aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity. Mol Pharmacol. 1977 Mar;13(2):259–268. [PubMed] [Google Scholar]
  2. Butler M. A., Lang N. P., Young J. F., Caporaso N. E., Vineis P., Hayes R. B., Teitel C. H., Massengill J. P., Lawsen M. F., Kadlubar F. F. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics. 1992 Jun;2(3):116–127. doi: 10.1097/00008571-199206000-00003. [DOI] [PubMed] [Google Scholar]
  3. Chang C., Smith D. R., Prasad V. S., Sidman C. L., Nebert D. W., Puga A. Ten nucleotide differences, five of which cause amino acid changes, are associated with the Ah receptor locus polymorphism of C57BL/6 and DBA/2 mice. Pharmacogenetics. 1993 Dec;3(6):312–321. doi: 10.1097/00008571-199312000-00005. [DOI] [PubMed] [Google Scholar]
  4. Constantin D., Francis J. E., Akhtar R. A., Clothier B., Smith A. G. Uroporphyria induced by 5-aminolaevulinic acid alone in Ahrd SWR mice. Biochem Pharmacol. 1996 Nov 8;52(9):1407–1413. doi: 10.1016/s0006-2952(96)00475-3. [DOI] [PubMed] [Google Scholar]
  5. De Matteis F., Harvey C., Reed C., Hempenius R. Increased oxidation of uroporphyrinogen by an inducible liver microsomal system. Possible relevance to drug-induced uroporphyria. Biochem J. 1988 Feb 15;250(1):161–169. doi: 10.1042/bj2500161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deam S., Elder G. H. Uroporphyria produced in mice by iron and 5-aminolevulinic acid. Biochem Pharmacol. 1991 Jun 15;41(12):2019–2022. doi: 10.1016/0006-2952(91)90144-t. [DOI] [PubMed] [Google Scholar]
  7. Elder G. H., Roberts A. G. Uroporphyrinogen decarboxylase. J Bioenerg Biomembr. 1995 Apr;27(2):207–214. doi: 10.1007/BF02110035. [DOI] [PubMed] [Google Scholar]
  8. Greig J. B., Francis J. E., Kay S. J., Lovell D. P., Smith A. G. Incomplete correlation of 2,3,7,8-tetrachlorodibenzo-p-dioxin hepatotoxicity with Ah phenotype in mice. Toxicol Appl Pharmacol. 1984 Jun 15;74(1):17–25. doi: 10.1016/0041-008x(84)90265-5. [DOI] [PubMed] [Google Scholar]
  9. Jacobs J. M., Sinclair P. R., Bement W. J., Lambrecht R. W., Sinclair J. F., Goldstein J. A. Oxidation of uroporphyrinogen by methylcholanthrene-induced cytochrome P-450. Essential role of cytochrome P-450d. Biochem J. 1989 Feb 15;258(1):247–253. doi: 10.1042/bj2580247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kostrubsky V. E., Strom S. C., Wood S. G., Wrighton S. A., Sinclair P. R., Sinclair J. F. Ethanol and isopentanol increase CYP3A and CYP2E in primary cultures of human hepatocytes. Arch Biochem Biophys. 1995 Oct 1;322(2):516–520. doi: 10.1006/abbi.1995.1495. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lambrecht R. W., Jacobs J. M., Sinclair P. R., Sinclair J. F. Inhibition of uroporphyrinogen decarboxylase activity. The role of cytochrome P-450-mediated uroporphyrinogen oxidation. Biochem J. 1990 Jul 15;269(2):437–441. doi: 10.1042/bj2690437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lambrecht R. W., Sinclair P. R., Gorman N., Sinclair J. F. Uroporphyrinogen oxidation catalyzed by reconstituted cytochrome P450IA2. Arch Biochem Biophys. 1992 May 1;294(2):504–510. doi: 10.1016/0003-9861(92)90717-b. [DOI] [PubMed] [Google Scholar]
  14. Liang H. C., Li H., McKinnon R. A., Duffy J. J., Potter S. S., Puga A., Nebert D. W. Cyp1a2(-/-) null mutant mice develop normally but show deficient drug metabolism. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1671–1676. doi: 10.1073/pnas.93.4.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Louis C. A., Wood S. G., Kostrubsky V., Sinclair P. R., Sinclair J. F. Synergistic increases in rat hepatic cytochrome P450s by ethanol and isopentanol. J Pharmacol Exp Ther. 1994 May;269(2):838–845. [PubMed] [Google Scholar]
  16. Louw M., Neethling A. C., Percy V. A., Carstens M., Shanley B. C. Effects of hexachlorobenzene feeding and iron overload on enzymes of haem biosynthesis and cytochrome P 450 in rat liver. Clin Sci Mol Med. 1977 Aug;53(2):111–115. doi: 10.1042/cs0530111. [DOI] [PubMed] [Google Scholar]
  17. Nebert D. W., Duffy J. J. How knockout mouse lines will be used to study the role of drug-metabolizing enzymes and their receptors during reproduction and development, and in environmental toxicity, cancer, and oxidative stress. Biochem Pharmacol. 1997 Feb 7;53(3):249–254. doi: 10.1016/s0006-2952(96)00740-x. [DOI] [PubMed] [Google Scholar]
  18. Nebert D. W. The Ah locus: genetic differences in toxicity, cancer, mutation, and birth defects. Crit Rev Toxicol. 1989;20(3):153–174. doi: 10.3109/10408448909017908. [DOI] [PubMed] [Google Scholar]
  19. Nerurkar P. V., Park S. S., Thomas P. E., Nims R. W., Lubet R. A. Methoxyresorufin and benzyloxyresorufin: substrates preferentially metabolized by cytochromes P4501A2 and 2B, respectively, in the rat and mouse. Biochem Pharmacol. 1993 Sep 1;46(5):933–943. doi: 10.1016/0006-2952(93)90504-p. [DOI] [PubMed] [Google Scholar]
  20. Raucy J., Fernandes P., Black M., Yang S. L., Koop D. R. Identification of a human liver cytochrome P-450 exhibiting catalytic and immunochemical similarities to cytochrome P-450 3a of rabbit liver. Biochem Pharmacol. 1987 Sep 15;36(18):2921–2926. doi: 10.1016/0006-2952(87)90203-6. [DOI] [PubMed] [Google Scholar]
  21. Roberts A. G., Whatley S. D., Morgan R. R., Worwood M., Elder G. H. Increased frequency of the haemochromatosis Cys282Tyr mutation in sporadic porphyria cutanea tarda. Lancet. 1997 Feb 1;349(9048):321–323. doi: 10.1016/S0140-6736(96)09436-6. [DOI] [PubMed] [Google Scholar]
  22. Roos P. H., Golub-Ciosk B., Kallweit P., Kauczinski D., Hanstein W. G. Formation of ligand and metabolite complexes as a means for selective quantitation of cytochrome P450 isozymes. Biochem Pharmacol. 1993 Jun 9;45(11):2239–2250. doi: 10.1016/0006-2952(93)90195-3. [DOI] [PubMed] [Google Scholar]
  23. Sinclair P. R., Bement W. J., Bonkovsky H. L., Sinclair J. F. Inhibition of uroporphyrinogen decarboxylase by halogenated biphenyls in chick hepatocyte cultures. Essential role for induction of cytochrome P-448. Biochem J. 1984 Sep 15;222(3):737–748. doi: 10.1042/bj2220737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sinclair P. R., Bement W. J., Lambrecht R. W., Gorman N., Sinclair J. F. Chlorinated biphenyls induce cytochrome P450IA2 and uroporphyrin accumulation in cultures of mouse hepatocytes. Arch Biochem Biophys. 1990 Sep;281(2):225–232. doi: 10.1016/0003-9861(90)90436-3. [DOI] [PubMed] [Google Scholar]
  25. Sinclair P. R., Bement W. J., Lambrecht R. W., Jacobs J. M., Sinclair J. F. Uroporphyria caused by acetone and 5-aminolevulinic acid in iron-loaded mice. Biochem Pharmacol. 1989 Dec 1;38(23):4341–4344. doi: 10.1016/0006-2952(89)90536-4. [DOI] [PubMed] [Google Scholar]
  26. Sinclair P. R., Gorman N., Shedlofsky S. I., Honsinger C. P., Sinclair J. F., Karagas M. R., Anderson K. E. Ascorbic acid deficiency in porphyria cutanea tarda. J Lab Clin Med. 1997 Aug;130(2):197–201. doi: 10.1016/s0022-2143(97)90096-2. [DOI] [PubMed] [Google Scholar]
  27. Sinclair P. R., Gorman N., Sinclair J. F., Walton H. S., Bement W. J., Lambrecht R. W. Ascorbic acid inhibits chemically induced uroporphyria in ascorbate-requiring rats. Hepatology. 1995 Aug;22(2):565–572. [PubMed] [Google Scholar]
  28. Sinclair P. R., Gorman N., Walton H. S., Sinclair J. F., Lee C. A., Rifkind A. B. Identification of CYP1A5 as the CYP1A enzyme mainly responsible for uroporphyrinogen oxidation induced by AH receptor ligands in chicken liver and kidney. Drug Metab Dispos. 1997 Jul;25(7):779–783. [PubMed] [Google Scholar]
  29. Sinclair P., Lambrecht R., Sinclair J. Evidence for cytochrome P450-mediated oxidation of uroporphyrinogen by cell-free liver extracts from chick embryos treated with 3-methylcholanthrene. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1324–1329. doi: 10.1016/0006-291x(87)90794-7. [DOI] [PubMed] [Google Scholar]
  30. Smith A. G., Cabral J. R., Carthew P., Francis J. E., Manson M. M. Carcinogenicity of iron in conjunction with a chlorinated environmental chemical, hexachlorobenzene, in C57BL/10ScSn mice. Int J Cancer. 1989 Mar 15;43(3):492–496. doi: 10.1002/ijc.2910430325. [DOI] [PubMed] [Google Scholar]
  31. Smith A. G., Francis J. E. Genetic variation of iron-induced uroporphyria in mice. Biochem J. 1993 Apr 1;291(Pt 1):29–35. doi: 10.1042/bj2910029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith A. G., Francis J. E., Green J. A., Greig J. B., Wolf C. R., Manson M. M. Sex-linked hepatic uroporphyria and the induction of cytochromes P450IA in rats caused by hexachlorobenzene and polyhalogenated biphenyls. Biochem Pharmacol. 1990 Nov 1;40(9):2059–2068. doi: 10.1016/0006-2952(90)90236-e. [DOI] [PubMed] [Google Scholar]
  33. Smith A. G., Francis J. E. Synergism of iron and hexachlorobenzene inhibits hepatic uroporphyrinogen decarboxylase in inbred mice. Biochem J. 1983 Sep 15;214(3):909–913. doi: 10.1042/bj2140909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sweeny G. D., Jones K. G., Cole F. M., Basford D., Krestynski F. Iron deficiency prevents liver toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Science. 1979 Apr 20;204(4390):332–335. doi: 10.1126/science.432648. [DOI] [PubMed] [Google Scholar]
  35. Taljaard J. J., Shanley B. C., Deppe W. M., Joubert S. M. Prophyrin metabolism in experimental hepatic siderosis in the rat. II. Combined effect of iron overload and hexachlorobenzene. Br J Haematol. 1972 Oct;23(4):513–519. doi: 10.1111/j.1365-2141.1972.tb07086.x. [DOI] [PubMed] [Google Scholar]
  36. Tsyrlov I. B., Goldfarb I. S., Gelboin H. V. Enzyme-kinetic and immunochemical characteristics of mouse cDNA-expressed, microsomal, and purified CYP1A1 and CYP1A2. Arch Biochem Biophys. 1993 Dec;307(2):259–266. doi: 10.1006/abbi.1993.1588. [DOI] [PubMed] [Google Scholar]
  37. Urquhart A. J., Elder G. H., Roberts A. G., Lambrecht R. W., Sinclair P. R., Bement W. J., Gorman N., Sinclair J. A. Uroporphyria produced in mice by 20-methylcholanthrene and 5-aminolaevulinic acid. Biochem J. 1988 Jul 15;253(2):357–362. doi: 10.1042/bj2530357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wrighton S. A., Thomas P. E., Ryan D. E., Levin W. Purification and characterization of ethanol-inducible human hepatic cytochrome P-450HLj. Arch Biochem Biophys. 1987 Oct;258(1):292–297. doi: 10.1016/0003-9861(87)90347-x. [DOI] [PubMed] [Google Scholar]
  39. den Besten C., Bennik M. H., Bruggeman I., Schielen P., Kuper F., Brouwer A., Koeman J. H., Vos J. G., Van Bladeren P. J. The role of oxidative metabolism in hexachlorobenzene-induced porphyria and thyroid hormone homeostasis: a comparison with pentachlorobenzene in a 13-week feeding study. Toxicol Appl Pharmacol. 1993 Apr;119(2):181–194. doi: 10.1006/taap.1993.1059. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES