Abstract
C1q, the first component of the classical pathway of the complement system, interacts with various cell types and triggers a variety of cell-specific cellular responses, such as oxidative burst, chemotaxis, phagocytosis, etc. Different biological responses are attributed to the interaction of C1q with more than one putative cell-surface C1q receptor/C1q-binding protein. Previously, it has been shown that C1q-mediated oxidative burst by neutrophils is not linked to G-protein-coupled fMet-Leu-Phe-mediated response. In the present study, we have investigated neutrophil migration brought about by C1q and tried to identify the signal-transduction pathways involved in the chemotactic response. We found that C1q stimulated neutrophil migration in a dose-dependent manner, primarily by enhancing chemotaxis (directed movement) rather than chemokinesis (random movement). This C1q-induced chemotaxis could be abolished by an inhibitor of G-proteins (pertussis toxin) and PtdIns(3,4,5)P3 kinase (wortmannin and LY294002). The collagen tail of C1q appeared to mediate chemotaxis. gC1qR, a C1q-binding protein, has recently been reported to participate in C1q-mediated chemotaxis of murine mast cells and human eosinophils. We observed that gC1qR enhanced binding of free C1q to adherent neutrophils and promoted C1q-mediated chemotaxis of neutrophils by nearly seven-fold. Our results suggests C1q-mediated chemotaxis involves gC1qR as well as G-protein-coupled signal-transduction mechanisms operating downstream to neutrophil chemotaxis.
Full Text
The Full Text of this article is available as a PDF (391.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arcaro A., Wymann M. P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J. 1993 Dec 1;296(Pt 2):297–301. doi: 10.1042/bj2960297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bobak D. A., Gaither T. A., Frank M. M., Tenner A. J. Modulation of FcR function by complement: subcomponent C1q enhances the phagocytosis of IgG-opsonized targets by human monocytes and culture-derived macrophages. J Immunol. 1987 Feb 15;138(4):1150–1156. [PubMed] [Google Scholar]
- Crawford N., Eggleton P. Dynamic changes in neutrophil cytoskeleton during priming and subsequent surface stimulated functions. Biochem Soc Trans. 1991 Nov;19(4):1048–1055. doi: 10.1042/bst0191048. [DOI] [PubMed] [Google Scholar]
- Dedio J., Müller-Esterl W. Kininogen binding protein p33/gC1qR is localized in the vesicular fraction of endothelial cells. FEBS Lett. 1996 Dec 16;399(3):255–258. doi: 10.1016/s0014-5793(96)01339-7. [DOI] [PubMed] [Google Scholar]
- Devreotes P. N., Zigmond S. H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu Rev Cell Biol. 1988;4:649–686. doi: 10.1146/annurev.cb.04.110188.003245. [DOI] [PubMed] [Google Scholar]
- Eggleton P., Ghebrehiwet B., Coburn J. P., Sastry K. N., Zaner K. S., Tauber A. I. Characterization of the human neutrophil C1q receptor and functional effects of free ligand on activated neutrophils. Blood. 1994 Sep 1;84(5):1640–1649. [PubMed] [Google Scholar]
- Eggleton P., Ghebrehiwet B., Sastry K. N., Coburn J. P., Zaner K. S., Reid K. B., Tauber A. I. Identification of a gC1q-binding protein (gC1q-R) on the surface of human neutrophils. Subcellular localization and binding properties in comparison with the cC1q-R. J Clin Invest. 1995 Apr;95(4):1569–1578. doi: 10.1172/JCI117830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggleton P., Reid K. B., Kishore U., Sontheimer R. D. Clinical relevance of calreticulin in systemic lupus erythematosus. Lupus. 1997;6(7):564–571. doi: 10.1177/096120339700600703. [DOI] [PubMed] [Google Scholar]
- Eggleton P., Wang L., Penhallow J., Crawford N., Brown K. A. Differences in oxidative response of subpopulations of neutrophils from healthy subjects and patients with rheumatoid arthritis. Ann Rheum Dis. 1995 Nov;54(11):916–923. doi: 10.1136/ard.54.11.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gewurz H., Ying S. C., Jiang H., Lint T. F. Nonimmune activation of the classical complement pathway. Behring Inst Mitt. 1993 Dec;(93):138–147. [PubMed] [Google Scholar]
- Ghebrehiwet B., Kew R. R., Gruber B. L., Marchese M. J., Peerschke E. I., Reid K. B. Murine mast cells express two types of C1q receptors that are involved in the induction of chemotaxis and chemokinesis. J Immunol. 1995 Sep 1;155(5):2614–2619. [PubMed] [Google Scholar]
- Ghebrehiwet B., Lim B. L., Peerschke E. I., Willis A. C., Reid K. B. Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular "heads" of C1q. J Exp Med. 1994 Jun 1;179(6):1809–1821. doi: 10.1084/jem.179.6.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghebrehiwet B., Lu P. D., Zhang W., Keilbaugh S. A., Leigh L. E., Eggleton P., Reid K. B., Peerschke E. I. Evidence that the two C1q binding membrane proteins, gC1q-R and cC1q-R, associate to form a complex. J Immunol. 1997 Aug 1;159(3):1429–1436. [PubMed] [Google Scholar]
- Ghebrehiwet B., Lu P. D., Zhang W., Lim B. L., Eggleton P., Leigh L. E., Reid K. B., Peerschke E. I. Identification of functional domains on gC1Q-R, a cell surface protein that binds to the globular "heads" of C1Q, using monoclonal antibodies and synthetic peptides. Hybridoma. 1996 Oct;15(5):333–342. doi: 10.1089/hyb.1996.15.333. [DOI] [PubMed] [Google Scholar]
- Goodman E. B., Tenner A. J. Signal transduction mechanisms of C1q-mediated superoxide production. Evidence for the involvement of temporally distinct staurosporine-insensitive and sensitive pathways. J Immunol. 1992 Jun 15;148(12):3920–3928. [PubMed] [Google Scholar]
- Guan E. N., Burgess W. H., Robinson S. L., Goodman E. B., McTigue K. J., Tenner A. J. Phagocytic cell molecules that bind the collagen-like region of C1q. Involvement in the C1q-mediated enhancement of phagocytosis. J Biol Chem. 1991 Oct 25;266(30):20345–20355. [PubMed] [Google Scholar]
- Hamada A., Greene B. M. Clq enhancement of IgG-dependent eosinophil-mediated killing of schistosomula in vitro. J Immunol. 1987 Feb 15;138(4):1240–1245. [PubMed] [Google Scholar]
- Harvath L., Aksamit R. R. Oxidized N-formylmethionyl-leucyl-phenylalanine: effect on the activation of human monocyte and neutrophil chemotaxis and superoxide production. J Immunol. 1984 Sep;133(3):1471–1476. [PubMed] [Google Scholar]
- Herwald H., Dedio J., Kellner R., Loos M., Müller-Esterl W. Isolation and characterization of the kininogen-binding protein p33 from endothelial cells. Identity with the gC1q receptor. J Biol Chem. 1996 May 31;271(22):13040–13047. doi: 10.1074/jbc.271.22.13040. [DOI] [PubMed] [Google Scholar]
- Jack R. M., Lowenstein B. A., Nicholson-Weller A. Regulation of C1q receptor expression on human polymorphonuclear leukocytes. J Immunol. 1994 Jul 1;153(1):262–269. [PubMed] [Google Scholar]
- Joseph K., Ghebrehiwet B., Peerschke E. I., Reid K. B., Kaplan A. P. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular "heads" of C1q (gC1q-R). Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8552–8557. doi: 10.1073/pnas.93.16.8552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishore U., Sontheimer R. D., Sastry K. N., Zappi E. G., Hughes G. R., Khamashta M. A., Reid K. B., Eggleton P. The systemic lupus erythematosus (SLE) disease autoantigen-calreticulin can inhibit C1q association with immune complexes. Clin Exp Immunol. 1997 May;108(2):181–190. doi: 10.1046/j.1365-2249.1997.3761273.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korb L. C., Ahearn J. M. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol. 1997 May 15;158(10):4525–4528. [PubMed] [Google Scholar]
- Kuna P., Iyer M., Peerschke E. I., Kaplan A. P., Reid K. B., Ghebrehiwet B. Human C1q induces eosinophil migration. Clin Immunol Immunopathol. 1996 Oct;81(1):48–54. doi: 10.1006/clin.1996.0156. [DOI] [PubMed] [Google Scholar]
- Lim B. L., Reid K. B., Ghebrehiwet B., Peerschke E. I., Leigh L. A., Preissner K. T. The binding protein for globular heads of complement C1q, gC1qR. Functional expression and characterization as a novel vitronectin binding factor. J Biol Chem. 1996 Oct 25;271(43):26739–26744. doi: 10.1074/jbc.271.43.26739. [DOI] [PubMed] [Google Scholar]
- Malhotra R., Willis A. C., Jensenius J. C., Jackson J., Sim R. B. Structure and homology of human C1q receptor (collectin receptor). Immunology. 1993 Mar;78(3):341–348. [PMC free article] [PubMed] [Google Scholar]
- Oiki S., Okada Y. C1q induces chemotaxis and K+ conductance activation coupled to increased cytosolic Ca2+ in mouse fibroblasts. J Immunol. 1988 Nov 1;141(9):3177–3185. [PubMed] [Google Scholar]
- Porter R. R., Reid K. B. Activation of the complement system by antibody-antigen complexes: the classical pathway. Adv Protein Chem. 1979;33:1–71. doi: 10.1016/s0065-3233(08)60458-1. [DOI] [PubMed] [Google Scholar]
- Pâques E. P., Huber R., Priess H., Wright J. K. Isolation of the globular region of the subcomponent q of the C1 component of complement. Hoppe Seylers Z Physiol Chem. 1979 Feb;360(2):177–183. doi: 10.1515/bchm2.1979.360.1.177. [DOI] [PubMed] [Google Scholar]
- Reid K. B. Isolation, by partial pepsin digestion, of the three collagen-like regions present in subcomponent Clq of the first component of human complement. Biochem J. 1976 Apr 1;155(1):5–17. doi: 10.1042/bj1550005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruiz S., Henschen-Edman A. H., Tenner A. J. Localization of the site on the complement component C1q required for the stimulation of neutrophil superoxide production. J Biol Chem. 1995 Dec 22;270(51):30627–30634. doi: 10.1074/jbc.270.51.30627. [DOI] [PubMed] [Google Scholar]
- Sham R. L., Phatak P. D., Ihne T. P., Abboud C. N., Packman C. H. Signal pathway regulation of interleukin-8-induced actin polymerization in neutrophils. Blood. 1993 Oct 15;82(8):2546–2551. [PubMed] [Google Scholar]
- Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
- Sozzani S., Zhou D., Locati M., Rieppi M., Proost P., Magazin M., Vita N., van Damme J., Mantovani A. Receptors and transduction pathways for monocyte chemotactic protein-2 and monocyte chemotactic protein-3. Similarities and differences with MCP-1. J Immunol. 1994 Apr 1;152(7):3615–3622. [PubMed] [Google Scholar]
- Stephens L., Eguinoa A., Corey S., Jackson T., Hawkins P. T. Receptor stimulated accumulation of phosphatidylinositol (3,4,5)-trisphosphate by G-protein mediated pathways in human myeloid derived cells. EMBO J. 1993 Jun;12(6):2265–2273. doi: 10.1002/j.1460-2075.1993.tb05880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenner A. J., Cooper N. R. Identification of types of cells in human peripheral blood that bind C1q. J Immunol. 1981 Mar;126(3):1174–1179. [PubMed] [Google Scholar]
- Vlahos C. J., Matter W. F., Brown R. F., Traynor-Kaplan A. E., Heyworth P. G., Prossnitz E. R., Ye R. D., Marder P., Schelm J. A., Rothfuss K. J. Investigation of neutrophil signal transduction using a specific inhibitor of phosphatidylinositol 3-kinase. J Immunol. 1995 Mar 1;154(5):2413–2422. [PubMed] [Google Scholar]
- Ying S. C., Gewurz A. T., Jiang H., Gewurz H. Human serum amyloid P component oligomers bind and activate the classical complement pathway via residues 14-26 and 76-92 of the A chain collagen-like region of C1q. J Immunol. 1993 Jan 1;150(1):169–176. [PubMed] [Google Scholar]
- van den Berg R. H., Prins F., Faber-Krol M. C., Lynch N. J., Schwaeble W., van Es L. A., Daha M. R. Intracellular localization of the human receptor for the globular domains of C1q. J Immunol. 1997 Apr 15;158(8):3909–3916. [PubMed] [Google Scholar]