Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):261–265. doi: 10.1042/bj3300261

Regulation of expression of human intestinal bile acid-binding protein in Caco-2 cells.

T Kanda 1, L Foucand 1, Y Nakamura 1, I Niot 1, P Besnard 1, M Fujita 1, Y Sakai 1, K Hatakeyama 1, T Ono 1, H Fujii 1
PMCID: PMC1219136  PMID: 9461519

Abstract

Molecular mechanisms of the bile acid active transport system in the ileal enterocytes remain unknown. We examined whether bile acids affect human enterocyte gene expression of intestinal bile acid-binding protein (I-BABP), a component of this transport system. Differentiated Caco-2 cells were incubated in the presence of human bile, bile acids or other lipids. The level of I-BABP expression was evaluated by Northern and Western blot analyses. A 24 h incubation of Caco-2 cells in a medium containing either bile or bile acids resulted in a remarkable 7.5-fold increase in the I-BABP mRNA level over the control level. Neither cholesterol, palmitic acid, phosphatidylcholine nor cholestyramine treated bile showed any difference in I-BABP mRNA expression from the control. Bile acid treatment increased the level of I-BABP mRNA in Caco-2 cells in a time- and dose-dependent manner. Western blot analysis showed that this induction led to increase in cytosolic I-BABP. Chenodeoxycholic acid and deoxycholic acid showed greater induction effects than other hydrophilic bile acids, including their own glycine conjugates. Pretreatment by actinomycin D or cycloheximide completely inhibited the up-regulation of I-BABP expression by bile acid. Bile acids, especially lipophilic bile acids, increase the I-BABP expression in Caco-2-cells, suggesting that luminal bile acids play an important role in regulating the I-BABP gene expression.

Full Text

The Full Text of this article is available as a PDF (243.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amri E. Z., Bonino F., Ailhaud G., Abumrad N. A., Grimaldi P. A. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J Biol Chem. 1995 Feb 3;270(5):2367–2371. doi: 10.1074/jbc.270.5.2367. [DOI] [PubMed] [Google Scholar]
  2. Cabral D. J., Small D. M., Lilly H. S., Hamilton J. A. Transbilayer movement of bile acids in model membranes. Biochemistry. 1987 Apr 7;26(7):1801–1804. doi: 10.1021/bi00381a002. [DOI] [PubMed] [Google Scholar]
  3. Chan L., Wei C. F., Li W. H., Yang C. Y., Ratner P., Pownall H., Gotto A. M., Jr, Smith L. C. Human liver fatty acid binding protein cDNA and amino acid sequence. Functional and evolutionary implications. J Biol Chem. 1985 Mar 10;260(5):2629–2632. [PubMed] [Google Scholar]
  4. Chandler C. E., Zaccaro L. M., Moberly J. B. Transepithelial transport of cholyltaurine by Caco-2 cell monolayers is sodium dependent. Am J Physiol. 1993 Jun;264(6 Pt 1):G1118–G1125. doi: 10.1152/ajpgi.1993.264.6.G1118. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Crestani M., Karam W. G., Chiang J. Y. Effects of bile acids and steroid/thyroid hormones on the expression of cholesterol 7 alpha-hydroxylase mRNA and the CYP7 gene in HepG2 cells. Biochem Biophys Res Commun. 1994 Jan 28;198(2):546–553. doi: 10.1006/bbrc.1994.1080. [DOI] [PubMed] [Google Scholar]
  7. Fogh J., Wright W. C., Loveless J. D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst. 1977 Feb;58(2):209–214. doi: 10.1093/jnci/58.2.209. [DOI] [PubMed] [Google Scholar]
  8. Fujii H., Nomura M., Kanda T., Amano O., Iseki S., Hatakeyama K., Ono T. Cloning of a cDNA encoding rat intestinal 15 kDa protein and its tissue distribution. Biochem Biophys Res Commun. 1993 Jan 15;190(1):175–180. doi: 10.1006/bbrc.1993.1027. [DOI] [PubMed] [Google Scholar]
  9. Fujita M., Fujii H., Kanda T., Sato E., Hatakeyama K., Ono T. Molecular cloning, expression, and characterization of a human intestinal 15-kDa protein. Eur J Biochem. 1995 Oct 15;233(2):406–413. doi: 10.1111/j.1432-1033.1995.406_2.x. [DOI] [PubMed] [Google Scholar]
  10. Gong Y. Z., Everett E. T., Schwartz D. A., Norris J. S., Wilson F. A. Molecular cloning, tissue distribution, and expression of a 14-kDa bile acid-binding protein from rat ileal cytosol. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4741–4745. doi: 10.1073/pnas.91.11.4741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gong Y. Z., Zwarych P. P., Jr, Lin M. C., Wilson F. A. Effect of antiserum to a 99 kDa polypeptide on the uptake of taurocholic acid by rat ileal brush border membrane vesicles. Biochem Biophys Res Commun. 1991 Aug 30;179(1):204–209. doi: 10.1016/0006-291x(91)91355-g. [DOI] [PubMed] [Google Scholar]
  12. Hidalgo I. J., Borchardt R. T. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim Biophys Acta. 1990 Jul 20;1035(1):97–103. doi: 10.1016/0304-4165(90)90179-z. [DOI] [PubMed] [Google Scholar]
  13. Kanda T., Niot I., Foucaud L., Fujii H., Bernard A., Ono T., Besnard P. Effect of bile on the intestinal bile-acid binding protein (I-BABP) expression. In vitro and in vivo studies. FEBS Lett. 1996 Apr 15;384(2):131–134. doi: 10.1016/0014-5793(96)00291-8. [DOI] [PubMed] [Google Scholar]
  14. Kanda T., Odani S., Tomoi M., Matsubara Y., Ono T. Primary structure of a 15-kDa protein from rat intestinal epithelium. Sequence similarity to fatty-acid-binding proteins. Eur J Biochem. 1991 May 8;197(3):759–768. doi: 10.1111/j.1432-1033.1991.tb15968.x. [DOI] [PubMed] [Google Scholar]
  15. Kramer W., Girbig F., Gutjahr U., Kowalewski S., Jouvenal K., Müller G., Tripier D., Wess G. Intestinal bile acid absorption. Na(+)-dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93-kDa and a peripheral 14-kDa bile acid-binding membrane protein along the duodenum-ileum axis. J Biol Chem. 1993 Aug 25;268(24):18035–18046. [PubMed] [Google Scholar]
  16. LACK L., WEINER I. M. In vitro absorption of bile salts by small intestine of rats and guinea pigs. Am J Physiol. 1961 Feb;200:313–317. doi: 10.1152/ajplegacy.1961.200.2.313. [DOI] [PubMed] [Google Scholar]
  17. Lillienau J., Crombie D. L., Munoz J., Longmire-Cook S. J., Hagey L. R., Hofmann A. F. Negative feedback regulation of the ileal bile acid transport system in rodents. Gastroenterology. 1993 Jan;104(1):38–46. doi: 10.1016/0016-5085(93)90833-x. [DOI] [PubMed] [Google Scholar]
  18. Lin M. C., Kramer W., Wilson F. A. Identification of cytosolic and microsomal bile acid-binding proteins in rat ileal enterocytes. J Biol Chem. 1990 Sep 5;265(25):14986–14995. [PubMed] [Google Scholar]
  19. Mallory A., Kern F., Jr, Smith J., Savage D. Patterns of bile acids and microflora in the human small intestine. I. Bile acids. Gastroenterology. 1973 Jan;64(1):26–33. [PubMed] [Google Scholar]
  20. Nakamura Y., Sakakibara J., Izumi T., Shibata A., Ono T. Transcriptional regulation of squalene epoxidase by sterols and inhibitors in HeLa cells. J Biol Chem. 1996 Apr 5;271(14):8053–8056. doi: 10.1074/jbc.271.14.8053. [DOI] [PubMed] [Google Scholar]
  21. Sato E., Fujii H., Fujita M., Kanda T., Iseki S., Hatakeyama K., Tanaka T., Ono T. Tissue-specific regulation of the expression of rat intestinal bile acid-binding protein. FEBS Lett. 1995 Oct 30;374(2):184–186. doi: 10.1016/0014-5793(95)01105-n. [DOI] [PubMed] [Google Scholar]
  22. Shneider B. L., Dawson P. A., Christie D. M., Hardikar W., Wong M. H., Suchy F. J. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest. 1995 Feb;95(2):745–754. doi: 10.1172/JCI117722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suzuki T., Ono T. Immunohistochemical studies on the distribution and frequency of fatty-acid-binding protein positive cells in human fetal, newborn and adult liver tissues. J Pathol. 1987 Dec;153(4):385–394. doi: 10.1002/path.1711530412. [DOI] [PubMed] [Google Scholar]
  24. Taniguchi T., Chen J., Cooper A. D. Regulation of cholesterol 7 alpha-hydroxylase gene expression in Hep-G2 cells. Effect of serum, bile salts, and coordinate and noncoordinate regulation with other sterol-responsive genes. J Biol Chem. 1994 Apr 1;269(13):10071–10078. [PubMed] [Google Scholar]
  25. Tuomela T., Viinikka L., Perheentupa J. Effects of estradiol and progesterone on epidermal growth factor concentration in plasma, bile, urine, submandibular gland and kidney of the mouse. Horm Res. 1989;31(3):143–147. doi: 10.1159/000181104. [DOI] [PubMed] [Google Scholar]
  26. Watanabe K., Hoshi N., Tsuura Y., Kanda T., Fujita M., Fujii H., Ono T., Suzuki T. Immunohistochemical distribution of intestinal 15 kDa protein in human tissues. Arch Histol Cytol. 1995 Aug;58(3):303–306. doi: 10.1679/aohc.58.303. [DOI] [PubMed] [Google Scholar]
  27. Wilson F. A., Treanor L. L. Characterization of the passive and active transport mechanisms for bile acid uptake into rat isolated intestinal epithelial cells. Biochim Biophys Acta. 1975 Oct 6;406(2):280–293. doi: 10.1016/0005-2736(75)90010-3. [DOI] [PubMed] [Google Scholar]
  28. Wong M. H., Oelkers P., Craddock A. L., Dawson P. A. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem. 1994 Jan 14;269(2):1340–1347. [PubMed] [Google Scholar]
  29. Wong M. H., Oelkers P., Dawson P. A. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem. 1995 Nov 10;270(45):27228–27234. doi: 10.1074/jbc.270.45.27228. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES