Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):277–286. doi: 10.1042/bj3300277

Signalling pathways of an insulin-mimetic phosphoinositolglycan-peptide in muscle and adipose tissue.

A Kessler 1, G Müller 1, S Wied 1, A Crecelius 1, J Eckel 1
PMCID: PMC1219138  PMID: 9461521

Abstract

A novel phosphoinositolglycan-peptide (PIG-P) from the yeast Saccharomyces cerevisiae potently mimicks insulin action on glucose transport and metabolism in rat muscle and adipose tissue. The aim of the present study was to elucidate the cellular signalling pathways of this insulin-mimetic compound. Rapid onset and reversibility of PIG-P action on glucose transport were observed in isolated adipocytes with a half-time of transport stimulation of 6-8 min (insulin less than 5 min). Combined treatment with PIG-P and insulin indicated additive stimulation of glucose transport at submaximal concentrations and non-additive action of both agents at maximal doses. The tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was markedly increased in response to PIG-P in rat cardiomyocytes without any effect on the tyrosine phosphorylation of the insulin receptor beta-subunit. PIG-P action in these cells was accompanied by phosphorylation/dephosphorylation of several proteins with molecular masses of 15-30 kDa, a response not detected with insulin. Downstream signalling of IRS-1 was then analysed by monitoring IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity in cardiomyocytes. A stable (2 and 15 min incubation with PIG-P) 7-fold stimulation corresponding to about 50% of insulin action could be detected. Increased tyrosine phosphorylation of IRS-1 and enhanced PI 3-kinase activity in response to PIG-P independent of the insulin receptor was also observed in isolated adipocytes. Involvement of PI 3-kinase in PIG-P action was subsequently confirmed by the dose-dependent inhibition of PIG-P-activated glucose transport in rat diaphragm and adipocytes by the PI 3-kinase inhibitors wortmannin and LY294002. These data suggest divergent upstream signalling by insulin and PIG-P involving phosphoproteins not affected by insulin. However, PIG-P and insulin action converge at the level of IRS-1 inducing insulin-independent PI 3-kinase-mediated signalling to glucose transport.

Full Text

The Full Text of this article is available as a PDF (596.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alemany S., Mato J. M., Strålfors P. Phospho-dephospho-control by insulin is mimicked by a phospho-oligosaccharide in adipocytes. Nature. 1987 Nov 5;330(6143):77–79. doi: 10.1038/330077a0. [DOI] [PubMed] [Google Scholar]
  2. Argetsinger L. S., Hsu G. W., Myers M. G., Jr, Billestrup N., White M. F., Carter-Su C. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J Biol Chem. 1995 Jun 16;270(24):14685–14692. doi: 10.1074/jbc.270.24.14685. [DOI] [PubMed] [Google Scholar]
  3. Cheatham B., Kahn C. R. Insulin action and the insulin signaling network. Endocr Rev. 1995 Apr;16(2):117–142. doi: 10.1210/edrv-16-2-117. [DOI] [PubMed] [Google Scholar]
  4. Clarke J. F., Young P. W., Yonezawa K., Kasuga M., Holman G. D. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J. 1994 Jun 15;300(Pt 3):631–635. doi: 10.1042/bj3000631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deeg M. A., Brass E. P., Rosenberry T. L. Inositol glycan phosphate derived from human erythrocyte acetylcholinesterase glycolipid anchor and inositol cyclic 1,2-phosphate antagonize glucagon activation of glycogen phosphorylase. Diabetes. 1993 Sep;42(9):1318–1323. doi: 10.2337/diab.42.9.1318. [DOI] [PubMed] [Google Scholar]
  6. Eckel J., Pandalis G., Reinauer H. Insulin action on the glucose transport system in isolated cardiocytes from adult rat. Biochem J. 1983 May 15;212(2):385–392. doi: 10.1042/bj2120385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farese R. V., Standaert M. L., Yamada K., Huang L. C., Zhang C., Cooper D. R., Wang Z., Yang Y., Suzuki S., Toyota T. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11040–11044. doi: 10.1073/pnas.91.23.11040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foley J. E., Gliemann J. Accumulation of 2-deoxyglucose against its concentration gradient in rat adipocytes. Biochim Biophys Acta. 1981 Oct 20;648(1):100–106. doi: 10.1016/0005-2736(81)90129-2. [DOI] [PubMed] [Google Scholar]
  9. Gaulton G. N. Differential regulation of glycosylated phosphatidylinositol subtypes by insulin. Diabetes. 1991 Oct;40(10):1297–1304. doi: 10.2337/diab.40.10.1297. [DOI] [PubMed] [Google Scholar]
  10. Johnston J. A., Wang L. M., Hanson E. P., Sun X. J., White M. F., Oakes S. A., Pierce J. H., O'Shea J. J. Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases. J Biol Chem. 1995 Dec 1;270(48):28527–28530. doi: 10.1074/jbc.270.48.28527. [DOI] [PubMed] [Google Scholar]
  11. KIPNIS D. M., CORI C. F. Studies of tissue permeability. III. The effect of insulin on pentose uptake by the diaphragm. J Biol Chem. 1957 Feb;224(2):681–693. [PubMed] [Google Scholar]
  12. Karnieli E., Zarnowski M. J., Hissin P. J., Simpson I. A., Salans L. B., Cushman S. W. Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. Time course, reversal, insulin concentration dependency, and relationship to glucose transport activity. J Biol Chem. 1981 May 25;256(10):4772–4777. [PubMed] [Google Scholar]
  13. Katagiri H., Asano T., Ishihara H., Inukai K., Shibasaki Y., Kikuchi M., Yazaki Y., Oka Y. Overexpression of catalytic subunit p110alpha of phosphatidylinositol 3-kinase increases glucose transport activity with translocation of glucose transporters in 3T3-L1 adipocytes. J Biol Chem. 1996 Jul 19;271(29):16987–16990. doi: 10.1074/jbc.271.29.16987. [DOI] [PubMed] [Google Scholar]
  14. Kelly K. L., Merida I., Wong E. H., DiCenzo D., Mato J. M. A phospho-oligosaccharide mimics the effect of insulin to inhibit isoproterenol-dependent phosphorylation of phospholipid methyltransferase in isolated adipocytes. J Biol Chem. 1987 Nov 5;262(31):15285–15290. [PubMed] [Google Scholar]
  15. Kolter T., Uphues I., Eckel J. Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am J Physiol. 1997 Jul;273(1 Pt 1):E59–E67. doi: 10.1152/ajpendo.1997.273.1.E59. [DOI] [PubMed] [Google Scholar]
  16. Kowalski-Chauvel A., Pradayrol L., Vaysse N., Seva C. Gastrin stimulates tyrosine phosphorylation of insulin receptor substrate 1 and its association with Grb2 and the phosphatidylinositol 3-kinase. J Biol Chem. 1996 Oct 18;271(42):26356–26361. doi: 10.1074/jbc.271.42.26356. [DOI] [PubMed] [Google Scholar]
  17. Kuo C. J., Chung J., Fiorentino D. F., Flanagan W. M., Blenis J., Crabtree G. R. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature. 1992 Jul 2;358(6381):70–73. doi: 10.1038/358070a0. [DOI] [PubMed] [Google Scholar]
  18. Larner J. Insulin-signaling mechanisms. Lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes. 1988 Mar;37(3):262–275. doi: 10.2337/diab.37.3.262. [DOI] [PubMed] [Google Scholar]
  19. Lazar D. F., Knez J. J., Medof M. E., Cuatrecasas P., Saltiel A. R. Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphatidylinositol. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9665–9669. doi: 10.1073/pnas.91.21.9665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liscovitch M., Cantley L. C. Signal transduction and membrane traffic: the PITP/phosphoinositide connection. Cell. 1995 Jun 2;81(5):659–662. doi: 10.1016/0092-8674(95)90525-1. [DOI] [PubMed] [Google Scholar]
  21. Low M. G., Saltiel A. R. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 1988 Jan 15;239(4837):268–275. doi: 10.1126/science.3276003. [DOI] [PubMed] [Google Scholar]
  22. Mastick C. C., Brady M. J., Saltiel A. R. Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol. 1995 Jun;129(6):1523–1531. doi: 10.1083/jcb.129.6.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Misek D. E., Saltiel A. R. An inositol phosphate glycan derived from a Trypanosoma brucei glycosyl phosphatidylinositol promotes protein dephosphorylation in rat epididymal adipocytes. Endocrinology. 1994 Nov;135(5):1869–1876. doi: 10.1210/endo.135.5.7956908. [DOI] [PubMed] [Google Scholar]
  24. Misek D. E., Saltiel A. R. An inositol phosphate glycan derived from a Trypanosoma brucei glycosyl-phosphatidylinositol mimics some of the metabolic actions of insulin. J Biol Chem. 1992 Aug 15;267(23):16266–16273. [PubMed] [Google Scholar]
  25. Müller G., Geisen K. Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at adipocytes. Horm Metab Res. 1996 Sep;28(9):469–487. doi: 10.1055/s-2007-979839. [DOI] [PubMed] [Google Scholar]
  26. Müller G., Schubert K., Fiedler F., Bandlow W. The cAMP-binding ectoprotein from Saccharomyces cerevisiae is membrane-anchored by glycosyl-phosphatidylinositol. J Biol Chem. 1992 Dec 15;267(35):25337–25346. [PubMed] [Google Scholar]
  27. Müller G., Wied S., Crecelius A., Kessler A., Eckel J. Phosphoinositolglycan-peptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes, and diaphragms. Endocrinology. 1997 Aug;138(8):3459–3475. doi: 10.1210/endo.138.8.5308. [DOI] [PubMed] [Google Scholar]
  28. Navé B. T., Haigh R. J., Hayward A. C., Siddle K., Shepherd P. R. Compartment-specific regulation of phosphoinositide 3-kinase by platelet-derived growth factor and insulin in 3T3-L1 adipocytes. Biochem J. 1996 Aug 15;318(Pt 1):55–60. doi: 10.1042/bj3180055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  30. Okada T., Kawano Y., Sakakibara T., Hazeki O., Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem. 1994 Feb 4;269(5):3568–3573. [PubMed] [Google Scholar]
  31. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  32. Rodgers W., Crise B., Rose J. K. Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol. 1994 Aug;14(8):5384–5391. doi: 10.1128/mcb.14.8.5384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Romero G., Gámez G., Huang L. C., Lilley K., Luttrell L. Anti-inositolglycan antibodies selectively block some of the actions of insulin in intact BC3H1 cells. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1476–1480. doi: 10.1073/pnas.87.4.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Russ M., Eckel J. Insulin action on cardiac glucose transport: studies on the role of protein kinase C. Biochim Biophys Acta. 1995 Feb 16;1265(1):73–78. doi: 10.1016/0167-4889(94)00200-x. [DOI] [PubMed] [Google Scholar]
  35. Saad M. J., Velloso L. A., Carvalho C. R. Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem J. 1995 Sep 15;310(Pt 3):741–744. doi: 10.1042/bj3100741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saltiel A. R. Insulin generates an enzyme modulator from hepatic plasma membranes: regulation of adenosine 3',5'-monophosphate phosphodiesterase, pyruvate dehydrogenase, and adenylate cyclase. Endocrinology. 1987 Mar;120(3):967–972. doi: 10.1210/endo-120-3-967. [DOI] [PubMed] [Google Scholar]
  37. Saltiel A. R. Second messengers of insulin action. Diabetes Care. 1990 Mar;13(3):244–256. doi: 10.2337/diacare.13.3.244. [DOI] [PubMed] [Google Scholar]
  38. Saltiel A. R., Sorbara-Cazan L. R. Inositol glycan mimics the action of insulin on glucose utilization in rat adipocytes. Biochem Biophys Res Commun. 1987 Dec 31;149(3):1084–1092. doi: 10.1016/0006-291x(87)90519-5. [DOI] [PubMed] [Google Scholar]
  39. Shashkin P. N., Shashkina E. F., Fernqvist-Forbes E., Zhou Y. P., Grill V., Katz A. Insulin mediators in man: effects of glucose ingestion and insulin resistance. Diabetologia. 1997 May;40(5):557–563. doi: 10.1007/s001250050715. [DOI] [PubMed] [Google Scholar]
  40. Su B., Waneck G. L., Flavell R. A., Bothwell A. L. The glycosyl phosphatidylinositol anchor is critical for Ly-6A/E-mediated T cell activation. J Cell Biol. 1991 Feb;112(3):377–384. doi: 10.1083/jcb.112.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Suzuki S., Sugawara K., Satoh Y., Toyota T. Insulin stimulates the generation of two putative insulin mediators, inositol-glycan and diacylglycerol in BC3H-1 myocytes. J Biol Chem. 1991 May 5;266(13):8115–8121. [PubMed] [Google Scholar]
  42. Tachado S. D., Schofield L. Glycosylphosphatidylinositol toxin of Trypanosoma brucei regulates IL-1 alpha and TNF-alpha expression in macrophages by protein tyrosine kinase mediated signal transduction. Biochem Biophys Res Commun. 1994 Dec 15;205(2):984–991. doi: 10.1006/bbrc.1994.2763. [DOI] [PubMed] [Google Scholar]
  43. Thomas P. M., Samelson L. E. The glycophosphatidylinositol-anchored Thy-1 molecule interacts with the p60fyn protein tyrosine kinase in T cells. J Biol Chem. 1992 Jun 15;267(17):12317–12322. [PubMed] [Google Scholar]
  44. Uddin S., Yenush L., Sun X. J., Sweet M. E., White M. F., Platanias L. C. Interferon-alpha engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3'-kinase. J Biol Chem. 1995 Jul 7;270(27):15938–15941. doi: 10.1074/jbc.270.27.15938. [DOI] [PubMed] [Google Scholar]
  45. Varela-Nieto I., León Y., Caro H. N. Cell signalling by inositol phosphoglycans from different species. Comp Biochem Physiol B Biochem Mol Biol. 1996 Oct;115(2):223–241. doi: 10.1016/0305-0491(96)00087-9. [DOI] [PubMed] [Google Scholar]
  46. Velloso L. A., Folli F., Sun X. J., White M. F., Saad M. J., Kahn C. R. Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12490–12495. doi: 10.1073/pnas.93.22.12490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vila M. C., Milligan G., Standaert M. L., Farese R. V. Insulin activates glycerol-3-phosphate acyltransferase (de novo phosphatidic acid synthesis) through a phospholipid-derived mediator. Apparent involvement of Gi alpha and activation of a phospholipase C. Biochemistry. 1990 Sep 18;29(37):8735–8740. doi: 10.1021/bi00489a033. [DOI] [PubMed] [Google Scholar]
  48. Vlahos C. J., Matter W. F., Hui K. Y., Brown R. F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem. 1994 Feb 18;269(7):5241–5248. [PubMed] [Google Scholar]
  49. White M. F., Kahn C. R. The insulin signaling system. J Biol Chem. 1994 Jan 7;269(1):1–4. [PubMed] [Google Scholar]
  50. Wichelhaus A., Russ M., Petersen S., Eckel J. G protein expression and adenylate cyclase regulation in ventricular cardiomyocytes from STZ-diabetic rats. Am J Physiol. 1994 Aug;267(2 Pt 2):H548–H555. doi: 10.1152/ajpheart.1994.267.2.H548. [DOI] [PubMed] [Google Scholar]
  51. Witters L. A., Watts T. D., Gould G. W., Lienhard G. E., Gibbs E. M. Regulation of protein phosphorylation by insulin and an insulinomimetic oligosaccharide in 3T3-L1 adipocytes and Fao hepatoma cells. Biochem Biophys Res Commun. 1988 Jun 30;153(3):992–998. doi: 10.1016/s0006-291x(88)81326-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES