Abstract
We have investigated the effects of mutations at residues His-42, Arg-38 and Phe-41 in the distal haem pocket of horseradish peroxidase on the changes in protonation state that accompany redox- and ligand-linked changes to the haem group. The mutations H42L and R38L result in the loss of a characteristic pH dependency in the visible spectrum of the ferrous form and a diminished dependency of the midpoint redox potential of the haem group on pH. The results support the view that His-42, with its pK probably modulated by Arg-38, provides the protonation site on the reduced enzyme that is responsible for these pH dependencies. The mutations H42L and R38L also have major effects on the binding of cyanide to the haem. We have already reported that binding of cyanide to the ferrous forms of these mutants becomes too weak to be measurable [Meunier, Rodriguez-Lopez, Smith, Thorneley and Rich (1995) Biochemistry 34, 14687-14692]. The pH dependency of the rate constants for binding of cyanide to the oxidized form of H42L suggests that CN- is the kinetically active species, in contrast with wild-type horseradish peroxidase, where HCN is the binding form. For the R38L variant, the pH dependency of cyanide binding suggests that the pK of His-42 in the absence of Arg-38 is raised to 7.5-8, in the oxidized form. In contrast with these changes, the mutant F41A exhibits cyanide-binding behaviour that is similar to that of the wild type, both in its oxidized and reduced forms. However, the rate constant for carbon monoxide recombination increases substantially, suggesting that the access route for carbon monoxide, but not for cyanide, is perturbed by this amino acid substitution.
Full Text
The Full Text of this article is available as a PDF (455.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Araiso T., Dunford H. B. Horseradish peroxidase. XLI. Complex formation with nitrate and its effect upon compound I formation. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1177–1182. doi: 10.1016/0006-291x(80)90543-4. [DOI] [PubMed] [Google Scholar]
- Barlow C. H., Ohlsson P. I., Paul K. G. Infrared spectroscopic studies of carbonyl horseradish peroxidases. Biochemistry. 1976 May 18;15(10):2225–2229. doi: 10.1021/bi00655a031. [DOI] [PubMed] [Google Scholar]
- Coletta M., Ascoli F., Brunori M., Traylor T. G. pH dependence of carbon monoxide binding to ferrous horseradish peroxidase. J Biol Chem. 1986 Jul 25;261(21):9811–9814. [PubMed] [Google Scholar]
- Conroy C. W., Tyma P., Daum P. H., Erman J. E. Oxidation-reduction potential measurements of cytochrome c peroxidase and pH dependent spectral transitions in the ferrous enzyme. Biochim Biophys Acta. 1978 Nov 20;537(1):62–69. doi: 10.1016/0005-2795(78)90602-5. [DOI] [PubMed] [Google Scholar]
- Doster W., Bowne S. F., Frauenfelder H., Reinisch L., Shyamsunder E. Recombination of carbon monoxide to ferrous horseradish peroxidase types A and C. J Mol Biol. 1987 Mar 20;194(2):299–312. doi: 10.1016/0022-2836(87)90377-9. [DOI] [PubMed] [Google Scholar]
- Dutton P. L., Wilson D. F. Redox potentiometry in mitochondrial and photosynthetic bioenergetics. Biochim Biophys Acta. 1974 Oct 31;346(2):165–212. doi: 10.1016/0304-4173(74)90008-1. [DOI] [PubMed] [Google Scholar]
- Edwards S. L., Nguyen H. X., Hamlin R. C., Kraut J. Crystal structure of cytochrome c peroxidase compound I. Biochemistry. 1987 Mar 24;26(6):1503–1511. doi: 10.1021/bi00380a002. [DOI] [PubMed] [Google Scholar]
- Edwards S. L., Poulos T. L. Ligand binding and structural perturbations in cytochrome c peroxidase. A crystallographic study. J Biol Chem. 1990 Feb 15;265(5):2588–2595. [PubMed] [Google Scholar]
- Edwards S. L., Raag R., Wariishi H., Gold M. H., Poulos T. L. Crystal structure of lignin peroxidase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):750–754. doi: 10.1073/pnas.90.2.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis W. D., Dunford H. B. The kinetics of cyanide and fluoride binding by ferric horseradish peroxidase. Biochemistry. 1968 Jun;7(6):2054–2062. doi: 10.1021/bi00846a006. [DOI] [PubMed] [Google Scholar]
- Finzel B. C., Poulos T. L., Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem. 1984 Nov 10;259(21):13027–13036. [PubMed] [Google Scholar]
- Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L. Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol. 1997 Dec;4(12):1032–1038. doi: 10.1038/nsb1297-1032. [DOI] [PubMed] [Google Scholar]
- Gao Y., McLendon G., Pielak G. J., Williams R. J. Electron-proton coupling in cytochrome c studied using protein variants. Eur J Biochem. 1992 Feb 15;204(1):337–352. doi: 10.1111/j.1432-1033.1992.tb16642.x. [DOI] [PubMed] [Google Scholar]
- HARBURY H. A. Oxidation-reduction potentials of horseradish peroxidase. J Biol Chem. 1957 Apr;225(2):1009–1024. [PubMed] [Google Scholar]
- Iizuka T., Makino R., Ishimura Y., Yonetani T. Reversible acidic-alkaline transition of the carbon monoxide complex of cytochrome c peroxidase. J Biol Chem. 1985 Feb 10;260(3):1407–1412. [PubMed] [Google Scholar]
- La Mar G. N., De Ropp J. S., Chacko V. P., Satterlee J. D., Erman J. E. Axial histidyl imidazole non-exchangeable proton resonances as indicators of imidazole hydrogen bonding in ferric cyanide complexes of heme peroxidases. Biochim Biophys Acta. 1982 Nov 19;708(3):317–325. doi: 10.1016/0167-4838(82)90443-5. [DOI] [PubMed] [Google Scholar]
- Marquez L. A., Huang J. T., Dunford H. B. Spectral and kinetic studies on the formation of myeloperoxidase compounds I and II: roles of hydrogen peroxide and superoxide. Biochemistry. 1994 Feb 15;33(6):1447–1454. doi: 10.1021/bi00172a022. [DOI] [PubMed] [Google Scholar]
- Massey V., Hemmerich P. A photochemical procedure for reduction of oxidation-reduction proteins employing deazariboflavin as catalyst. J Biol Chem. 1977 Aug 25;252(16):5612–5614. [PubMed] [Google Scholar]
- Meunier B., Rodriguez-Lopez J. N., Smith A. T., Thorneley R. N., Rich P. R. Laser photolysis behavior of ferrous horseradish peroxidase with carbon monoxide and cyanide: effects of mutations in the distal heme pocket. Biochemistry. 1995 Nov 14;34(45):14687–14692. doi: 10.1021/bi00045a009. [DOI] [PubMed] [Google Scholar]
- Miller M. A., Mauro J. M., Smulevich G., Coletta M., Kraut J., Traylor T. G. CO dissociation in cytochrome c peroxidase: site-directed mutagenesis shows that distal Arg 48 influences CO dissociation rates. Biochemistry. 1990 Oct 23;29(42):9978–9988. doi: 10.1021/bi00494a031. [DOI] [PubMed] [Google Scholar]
- Mitchell R., Rich P. R. The binding of cyanide and carbon monoxide to bacterial cytochrome bo. Biochem Soc Trans. 1994 Aug;22(3):705–709. doi: 10.1042/bst0220705. [DOI] [PubMed] [Google Scholar]
- Moore G. R., Pettigrew G. W., Rogers N. K. Factors influencing redox potentials of electron transfer proteins. Proc Natl Acad Sci U S A. 1986 Jul;83(14):4998–4999. doi: 10.1073/pnas.83.14.4998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newmyer S. L., Ortiz de Montellano P. R. Horseradish peroxidase His-42 --> Ala, His-42 --> Val, and Phe-41 --> Ala mutants. Histidine catalysis and control of substrate access to the heme iron. J Biol Chem. 1995 Aug 18;270(33):19430–19438. doi: 10.1074/jbc.270.33.19430. [DOI] [PubMed] [Google Scholar]
- Phelps C., Antonini E., Brunori M. The binding of cyanide to ferroperoxidase. Biochem J. 1971 Mar;122(1):79–87. doi: 10.1042/bj1220079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poulos T. L., Kraut J. The stereochemistry of peroxidase catalysis. J Biol Chem. 1980 Sep 10;255(17):8199–8205. [PubMed] [Google Scholar]
- Rich P. R., Bendall D. S. The redox potentials of the b-type cytochromes of higher plant chloroplasts. Biochim Biophys Acta. 1980 Jun 10;591(1):153–161. doi: 10.1016/0005-2728(80)90229-7. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Lopez J. N., Smith A. T., Thorneley R. N. Effect of distal cavity mutations on the binding and activation of oxygen by ferrous horseradish peroxidase. J Biol Chem. 1997 Jan 3;272(1):389–395. doi: 10.1074/jbc.272.1.389. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Lopez J. N., Smith A. T., Thorneley R. N. Role of arginine 38 in horseradish peroxidase. A critical residue for substrate binding and catalysis. J Biol Chem. 1996 Feb 23;271(8):4023–4030. doi: 10.1074/jbc.271.8.4023. [DOI] [PubMed] [Google Scholar]
- Schuller D. J., Ban N., Huystee R. B., McPherson A., Poulos T. L. The crystal structure of peanut peroxidase. Structure. 1996 Mar 15;4(3):311–321. doi: 10.1016/s0969-2126(96)00035-4. [DOI] [PubMed] [Google Scholar]
- Smith A. T., Sanders S. A., Thorneley R. N., Burke J. F., Bray R. R. Characterisation of a haem active-site mutant of horseradish peroxidase, Phe41----Val, with altered reactivity towards hydrogen peroxide and reducing substrates. Eur J Biochem. 1992 Jul 15;207(2):507–519. doi: 10.1111/j.1432-1033.1992.tb17077.x. [DOI] [PubMed] [Google Scholar]
- Smith A. T., Santama N., Dacey S., Edwards M., Bray R. C., Thorneley R. N., Burke J. F. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J Biol Chem. 1990 Aug 5;265(22):13335–13343. [PubMed] [Google Scholar]
- Smulevich G., Miller M. A., Kraut J., Spiro T. G. Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase. Biochemistry. 1991 Oct 1;30(39):9546–9558. doi: 10.1021/bi00103a023. [DOI] [PubMed] [Google Scholar]
- Teraoka J., Kitagawa T. Resonance Raman study of the heme-linked ionization in reduced horseradish peroxidase. Biochem Biophys Res Commun. 1980 Apr 14;93(3):694–700. doi: 10.1016/0006-291x(80)91133-x. [DOI] [PubMed] [Google Scholar]
- Teraoka J., Kitagawa T. Structural implication of the heme-linked ionization of horseradish peroxidase probed by the Fe-histidine stretching Raman line. J Biol Chem. 1981 Apr 25;256(8):3969–3977. [PubMed] [Google Scholar]
- Veitch N. C., Williams R. J., Bray R. C., Burke J. F., Sanders S. A., Thorneley R. N., Smith A. T. Structural studies by proton-NMR spectroscopy of plant horseradish peroxidase C, the wild-type recombinant protein from Escherichia coli and two protein variants, Phe41----Val and Arg38----Lys. Eur J Biochem. 1992 Jul 15;207(2):521–531. doi: 10.1111/j.1432-1033.1992.tb17078.x. [DOI] [PubMed] [Google Scholar]
- Welinder K. G., Bjørnholm B., Dunford H. B. Functions of electrostatic potentials and conserved distal and proximal His-Asp H-bonding networks in haem peroxidases. Biochem Soc Trans. 1995 May;23(2):257–262. doi: 10.1042/bst0230257. [DOI] [PubMed] [Google Scholar]
- Williams R. J. Uncoupled and coupled electron transfer reactions. Biochim Biophys Acta. 1991 May 23;1058(1):71–74. doi: 10.1016/s0005-2728(05)80272-5. [DOI] [PubMed] [Google Scholar]
- Yamada H., Yamazaki I. Proton balance in conversions between five oxidation-reduction states of horseradish peroxidase. Arch Biochem Biophys. 1974 Dec;165(2):728–738. doi: 10.1016/0003-9861(74)90301-4. [DOI] [PubMed] [Google Scholar]
- Yamazaki I., Araiso T., Hayashi Y., Yamada H., Makino R. Analysis of acid-base properties of peroxidase and myoglobin. Adv Biophys. 1978;11:249–281. [PubMed] [Google Scholar]
- Yoshikawa S., O'Keeffe D. H., Caughey W. S. Investigations of cyanide as an infrared probe of hemeprotein ligand binding sites. J Biol Chem. 1985 Mar 25;260(6):3518–3528. [PubMed] [Google Scholar]
- Zhao D., Gilfoyle D. J., Smith A. T., Loew G. H. Refinement of 3D models of horseradish peroxidase isoenzyme C: predictions of 2D NMR assignments and substrate binding sites. Proteins. 1996 Oct;26(2):204–216. doi: 10.1002/(SICI)1097-0134(199610)26:2<204::AID-PROT10>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
- al-Mustafa J., Kincaid J. R. Resonance Raman study of cyanide-ligated horseradish peroxidase. Detection of two binding geometries and direct evidence for the "push-pull" effect. Biochemistry. 1994 Mar 1;33(8):2191–2197. doi: 10.1021/bi00174a028. [DOI] [PubMed] [Google Scholar]