Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):383–387. doi: 10.1042/bj3300383

Reconstitution of Cu2+-depleted bovine serum amine oxidase with Co2+.

E Agostinelli 1, G De Matteis 1, B Mondovì 1, L Morpurgo 1
PMCID: PMC1219151  PMID: 9461534

Abstract

Two different Cu2+-depleted derivatives of bovine serum amine oxidase (BSAO) have recently been prepared, which contain about 0.5 mol/dimer of phenylhydrazine-reactive topa quinone (TPQ) cofactor and, depending on the reagents used, about 0.2 or 0.7 residual Cu2+/dimer [Agostinelli, De Matteis, Sinibaldi, Mondovi and Morpurgo (1997) Biochem. J. 324, 497-501]. The benzylamine oxidase activity of both derivatives was <5% and increased up to approximately 20% on incorporation of Co2+, irrespective of the residual Cu2+ content, which was unaffected by the treatment according to atomic absorption and ESR spectroscopy. The residual Cu2+ ions appeared to be distributed one per dimer and to be bound to inactive subunits, whereas Co2+ was bound to active subunits. The change in the active site had an appreciable influence on the kinetic behaviour. With several amines, the kinetic parameters, Km and kc, measured for Co2+-BSAO were different from those for native BSAO. This excludes the possibility that the catalytic activity was due to residual Cu2+. Furthermore, Co2+ restored to nearly native level the intensity of the TPQ 480 nm band and the reactions with phenylhydrazine or benzylhydrazine, which had been slowed down or abolished, respectively, in Cu2+-depleted samples. The CD spectrum, measured for the derivative with low Cu2+ content, was compatible with Co2+ binding to the copper site. The amine oxidase activity of the Co2+ derivative, which cannot form a semiquinone radical as an intermediate of the catalytic reaction, strongly suggests that the Cu+-semiquinone is not an obligatory intermediate of BSAO catalytic pathway.

Full Text

The Full Text of this article is available as a PDF (301.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostinelli E., De Matteis G., Sinibaldi A., Mondovì B., Morpurgo L. Reactions of the oxidized organic cofactor in copper-depleted bovine serum amine oxidase. Biochem J. 1997 Jun 1;324(Pt 2):497–501. doi: 10.1042/bj3240497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agostinelli E., Morpurgo L., Wang C., Giartosio A., Mondovì B. Properties of cobalt-substituted bovine serum amine oxidase. Eur J Biochem. 1994 Jun 15;222(3):727–732. doi: 10.1111/j.1432-1033.1994.tb18918.x. [DOI] [PubMed] [Google Scholar]
  3. Bossa M., Morpurgo G. O., Morpurgo L. Models and molecular orbital semiempirical calculations in the study of the spectroscopic properties of bovine serum amine oxidase quinone cofactor. Biochemistry. 1994 Apr 12;33(14):4425–4431. doi: 10.1021/bi00180a041. [DOI] [PubMed] [Google Scholar]
  4. Cai D., Klinman J. P. Evidence of a self-catalytic mechanism of 2,4,5-trihydroxyphenylalanine quinone biogenesis in yeast copper amine oxidase. J Biol Chem. 1994 Dec 23;269(51):32039–32042. [PubMed] [Google Scholar]
  5. Coleman J. E., Coleman R. V. Magnetic circular dichroism of Co (II) carbonic anhydrase. J Biol Chem. 1972 Aug 10;247(15):4718–4728. [PubMed] [Google Scholar]
  6. Collison D., Knowles P. F., Mabbs F. E., Rius F. X., Singh I., Dooley D. M., Cote C. E., McGuirl M. Studies on the active site of pig plasma amine oxidase. Biochem J. 1989 Dec 15;264(3):663–669. doi: 10.1042/bj2640663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Biase D., Agostinelli E., De Matteis G., Mondovì B., Morpurgo L. Half-of-the-sites reactivity of bovine serum amine oxidase. Reactivity and chemical identity of the second site. Eur J Biochem. 1996 Apr 1;237(1):93–99. doi: 10.1111/j.1432-1033.1996.0093n.x. [DOI] [PubMed] [Google Scholar]
  8. Dooley D. M., McGuirl M. A., Brown D. E., Turowski P. N., McIntire W. S., Knowles P. F. A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature. 1991 Jan 17;349(6306):262–264. doi: 10.1038/349262a0. [DOI] [PubMed] [Google Scholar]
  9. Janes S. M., Klinman J. P. An investigation of bovine serum amine oxidase active site stoichiometry: evidence for an aminotransferase mechanism involving two carbonyl cofactors per enzyme dimer. Biochemistry. 1991 May 7;30(18):4599–4605. doi: 10.1021/bi00232a034. [DOI] [PubMed] [Google Scholar]
  10. Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A. L., Klinman J. P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science. 1990 May 25;248(4958):981–987. doi: 10.1126/science.2111581. [DOI] [PubMed] [Google Scholar]
  11. Kumar V., Dooley D. M., Freeman H. C., Guss J. M., Harvey I., McGuirl M. A., Wilce M. C., Zubak V. M. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution. Structure. 1996 Aug 15;4(8):943–955. doi: 10.1016/s0969-2126(96)00101-3. [DOI] [PubMed] [Google Scholar]
  12. Lindström A., Olsson B., Pettersson G., Szymanska J. Kinetics of the interaction between pig-plasma benzylamine oxidase and various monoamines. Eur J Biochem. 1974 Aug 15;47(1):99–105. doi: 10.1111/j.1432-1033.1974.tb03672.x. [DOI] [PubMed] [Google Scholar]
  13. Matsuzaki R., Fukui T., Sato H., Ozaki Y., Tanizawa K. Generation of the topa quinone cofactor in bacterial monoamine oxidase by cupric ion-dependent autooxidation of a specific tyrosyl residue. FEBS Lett. 1994 Sep 12;351(3):360–364. doi: 10.1016/0014-5793(94)00884-1. [DOI] [PubMed] [Google Scholar]
  14. Matsuzaki R., Suzuki S., Yamaguchi K., Fukui T., Tanizawa K. Spectroscopic studies on the mechanism of the topa quinone generation in bacterial monoamine oxidase. Biochemistry. 1995 Apr 11;34(14):4524–4530. doi: 10.1021/bi00014a004. [DOI] [PubMed] [Google Scholar]
  15. McGuirl M. A., McCahon C. D., McKeown K. A., Dooley D. M. Purification and characterization of pea seedling amine oxidase for crystallization studies. Plant Physiol. 1994 Nov;106(3):1205–1211. doi: 10.1104/pp.106.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morpurgo L., Agostinelli E., Befani O., Mondovì B. Reactions of bovine serum amine oxidase with NN-diethyldithiocarbamate. Selective removal of one copper ion. Biochem J. 1987 Dec 15;248(3):865–870. doi: 10.1042/bj2480865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morpurgo L., Agostinelli E., Mondovi B., Avigliano L., Silvestri R., Stefancich G., Artico M. Bovine serum amine oxidase: half-site reactivity with phenylhydrazine, semicarbazide, and aromatic hydrazides. Biochemistry. 1992 Mar 10;31(9):2615–2621. doi: 10.1021/bi00124a023. [DOI] [PubMed] [Google Scholar]
  18. Morpurgo L., Agostinelli E., Mondovì B., Avigliano L. The role of copper in bovine serum amine oxidase. Biol Met. 1990;3(2):114–117. doi: 10.1007/BF01179516. [DOI] [PubMed] [Google Scholar]
  19. Morpurgo L., Agostinelli E., Muccigrosso J., Martini F., Mondovi B., Avigliano L. Benzylhydrazine as a pseudo-substrate of bovine serum amine oxidase. Biochem J. 1989 May 15;260(1):19–25. doi: 10.1042/bj2600019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olsson B., Olsson J., Pettersson G. Effects on enzyme activity of ligand-binding to copper in pig-plasma benzylamine oxidase. Eur J Biochem. 1978 Jun 1;87(1):1–8. doi: 10.1111/j.1432-1033.1978.tb12345.x. [DOI] [PubMed] [Google Scholar]
  21. Padiglia A., Medda R., Floris G. Lentil seedling amine oxidase: interaction with carbonyl reagents. Biochem Int. 1992 Dec;28(6):1097–1107. [PubMed] [Google Scholar]
  22. Palcic M. M., Klinman J. P. Isotopic probes yield microscopic constants: separation of binding energy from catalytic efficiency in the bovine plasma amine oxidase reaction. Biochemistry. 1983 Dec 6;22(25):5957–5966. doi: 10.1021/bi00294a040. [DOI] [PubMed] [Google Scholar]
  23. Parsons M. R., Convery M. A., Wilmot C. M., Yadav K. D., Blakeley V., Corner A. S., Phillips S. E., McPherson M. J., Knowles P. F. Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure. 1995 Nov 15;3(11):1171–1184. doi: 10.1016/s0969-2126(01)00253-2. [DOI] [PubMed] [Google Scholar]
  24. Steinebach V., Benen J. A., Bader R., Postma P. W., De Vries S., Duine J. A. Cloning of the maoA gene that encodes aromatic amine oxidase of Escherichia coli W3350 and characterization of the overexpressed enzyme. Eur J Biochem. 1996 May 1;237(3):584–591. doi: 10.1111/j.1432-1033.1996.0584p.x. [DOI] [PubMed] [Google Scholar]
  25. Suzuki S., Sakurai T., Nakahara A., Manabe T., Okuyama T. Effect of metal substitution on the chromophore of bovine serum amine oxidase. Biochemistry. 1983 Mar 29;22(7):1630–1635. doi: 10.1021/bi00276a016. [DOI] [PubMed] [Google Scholar]
  26. Suzuki S., Sakurai T., Nakahara A., Oda O., Manabe T., Okuyama T. Preparation and characterization of cobalt(II)-substituted bovine serum amine oxidase. J Biochem. 1981 Sep;90(3):905–908. doi: 10.1093/oxfordjournals.jbchem.a133551. [DOI] [PubMed] [Google Scholar]
  27. TABOR C. W., TABOR H., ROSENTHAL S. M. Purification of amine oxidase from beef plasma. J Biol Chem. 1954 Jun;208(2):645–661. [PubMed] [Google Scholar]
  28. Tipping A. J., McPherson M. J. Cloning and molecular analysis of the pea seedling copper amine oxidase. J Biol Chem. 1995 Jul 14;270(28):16939–16946. doi: 10.1074/jbc.270.28.16939. [DOI] [PubMed] [Google Scholar]
  29. Turini P., Sabatini S., Befani O., Chimenti F., Casanova C., Riccio P. L., Mondovì B. Purification of bovine plasma amine oxidase. Anal Biochem. 1982 Sep 15;125(2):294–298. doi: 10.1016/0003-2697(82)90009-4. [DOI] [PubMed] [Google Scholar]
  30. Wilmot C. M., Murray J. M., Alton G., Parsons M. R., Convery M. A., Blakeley V., Corner A. S., Palcic M. M., Knowles P. F., McPherson M. J. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction. Biochemistry. 1997 Feb 18;36(7):1608–1620. doi: 10.1021/bi962205j. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES