Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):405–411. doi: 10.1042/bj3300405

Possible role for gp160 in constitutive but not insulin-stimulated GLUT4 trafficking: dissociation of gp160 and GLUT4 localization.

A Filippis 1, S Clark 1, J Proietto 1
PMCID: PMC1219154  PMID: 9461537

Abstract

GLUT4-containing vesicles are constantly cycling in both basal and insulin-stimulated states. Our previous studies have shown that basal cycling of GLUT4 is impaired under conditions of high glucose or glucosamine and, as a consequence, GLUT4 is retained intracellularly in low-density microsomes [Filippis A., Clark, S., and Proietto, J. (1997) Biochem. J. 324, 981-985]. In addition to GLUT4 itself, a major protein component of GLUT4-containing vesicles is a glycoprotein of Mr 160000 (gp160). In all studies so far published gp160 has been co-localized with GLUT4 under all conditions. In this study, we show that retention of GLUT4 in low-density microsomes (enriched in Golgi apparatus) is associated with a decrease in gp160 levels in this compartment. A concomitant increase of gp160 in high-density microsomes (enriched in endoplasmic reticulum), demonstrates for the first time a dissociation in the localization of gp160 and GLUT4. Despite the marked decrease in gp160 levels in the GLUT4-containing compartment, insulin-stimulated translocation was normal, while little gp160 appeared in the plasma membrane in response to insulin. The retention of gp160 in the high-density microsomes is apparently not due to a change in the glycosylation state of gp160 as measured by [3H]mannose incorporation. It is concluded that, in rat adipocytes, gp160 is not required for insulin-stimulated translocation, but may be necessary for constitutive trafficking of the GLUT4-containing vesicle.

Full Text

The Full Text of this article is available as a PDF (257.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
  2. Baron A. D., Zhu J. S., Zhu J. H., Weldon H., Maianu L., Garvey W. T. Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity. J Clin Invest. 1995 Dec;96(6):2792–2801. doi: 10.1172/JCI118349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  5. Cain C. C., Trimble W. S., Lienhard G. E. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J Biol Chem. 1992 Jun 15;267(17):11681–11684. [PubMed] [Google Scholar]
  6. Caro L. H., Ohali A., Gorden P., Collier E. Mutational analysis of the NH2-terminal glycosylation sites of the insulin receptor alpha-subunit. Diabetes. 1994 Feb;43(2):240–246. doi: 10.2337/diab.43.2.240. [DOI] [PubMed] [Google Scholar]
  7. Cormont M., Tanti J. F., Grémeaux T., Van Obberghen E., Le Marchand-Brustel Y. Subcellular distribution of low molecular weight guanosine triphosphate-binding proteins in adipocytes: colocalization with the glucose transporter Glut 4. Endocrinology. 1991 Dec;129(6):3343–3350. doi: 10.1210/endo-129-6-3343. [DOI] [PubMed] [Google Scholar]
  8. Del Vecchio R. L., Pilch P. F. Phosphatidylinositol 4-kinase is a component of glucose transporter (GLUT 4)-containing vesicles. J Biol Chem. 1991 Jul 15;266(20):13278–13283. [PubMed] [Google Scholar]
  9. Desruisseau S., Franc J. L., Gruffat D., Chabaud O. Glycosylation of thyroglobulin secreted by porcine cells cultured in chamber system: thyrotropin controls the number of oligosaccharides and their anionic residues. Endocrinology. 1994 Apr;134(4):1676–1684. doi: 10.1210/endo.134.4.8137731. [DOI] [PubMed] [Google Scholar]
  10. Elbein A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem. 1987;56:497–534. doi: 10.1146/annurev.bi.56.070187.002433. [DOI] [PubMed] [Google Scholar]
  11. Filippis A., Clark S., Proietto J. Increased flux through the hexosamine biosynthesis pathway inhibits glucose transport acutely by activation of protein kinase C. Biochem J. 1997 Jun 15;324(Pt 3):981–985. doi: 10.1042/bj3240981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fleischer B. Isolation and characterization of Golgi apparatus and membranes from rat liver. Methods Enzymol. 1974;31:180–191. doi: 10.1016/0076-6879(74)31020-8. [DOI] [PubMed] [Google Scholar]
  13. Guerre-Millo M., Lavau M., Horne J. S., Wardzala L. J. Proposed mechanism for increased insulin-mediated glucose transport in adipose cells from young, obese Zucker rats. Large intracellular pool of glucose transporters. J Biol Chem. 1985 Feb 25;260(4):2197–2201. [PubMed] [Google Scholar]
  14. Hawkins M., Angelov I., Liu R., Barzilai N., Rossetti L. The tissue concentration of UDP-N-acetylglucosamine modulates the stimulatory effect of insulin on skeletal muscle glucose uptake. J Biol Chem. 1997 Feb 21;272(8):4889–4895. doi: 10.1074/jbc.272.8.4889. [DOI] [PubMed] [Google Scholar]
  15. Häring H. U., Biermann E., Kemmler W. Coupling of insulin binding and insulin action on glucose transport in fat cells. Am J Physiol. 1981 May;240(5):E556–E565. doi: 10.1152/ajpendo.1981.240.5.E556. [DOI] [PubMed] [Google Scholar]
  16. Jhun B. H., Rampal A. L., Liu H., Lachaal M., Jung C. Y. Effects of insulin on steady state kinetics of GLUT4 subcellular distribution in rat adipocytes. Evidence of constitutive GLUT4 recycling. J Biol Chem. 1992 Sep 5;267(25):17710–17715. [PubMed] [Google Scholar]
  17. Kandror K. V., Pilch P. F. gp160, a tissue-specific marker for insulin-activated glucose transport. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8017–8021. doi: 10.1073/pnas.91.17.8017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kandror K., Pilch P. F. Identification and isolation of glycoproteins that translocate to the cell surface from GLUT4-enriched vesicles in an insulin-dependent fashion. J Biol Chem. 1994 Jan 7;269(1):138–142. [PubMed] [Google Scholar]
  19. Kelada A. S., Macaulay S. L., Proietto J. Cyclic AMP acutely stimulates translocation of the major insulin-regulatable glucose transporter GLUT4. J Biol Chem. 1992 Apr 5;267(10):7021–7025. [PubMed] [Google Scholar]
  20. Keppler D. O., Rudigier J. F., Bischoff E., Decker K. F. The trapping of uridine phosphates by D-galactosamine. D-glucosamine, and 2-deoxy-D-galactose. A study on the mechanism of galactosamine hepatitis. Eur J Biochem. 1970 Dec;17(2):246–253. doi: 10.1111/j.1432-1033.1970.tb01160.x. [DOI] [PubMed] [Google Scholar]
  21. Kono T., Suzuki K., Dansey L. E., Robinson F. W., Blevins T. L. Energy-dependent and protein synthesis-independent recycling of the insulin-sensitive glucose transport mechanism in fat cells. J Biol Chem. 1981 Jun 25;256(12):6400–6407. [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Laurie S. M., Cain C. C., Lienhard G. E., Castle J. D. The glucose transporter GluT4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem. 1993 Sep 5;268(25):19110–19117. [PubMed] [Google Scholar]
  24. Mastick C. C., Aebersold R., Lienhard G. E. Characterization of a major protein in GLUT4 vesicles. Concentration in the vesicles and insulin-stimulated translocation to the plasma membrane. J Biol Chem. 1994 Feb 25;269(8):6089–6092. [PubMed] [Google Scholar]
  25. Napoli R., Hirshman M. F., Horton E. S. Mechanisms and time course of impaired skeletal muscle glucose transport activity in streptozocin diabetic rats. J Clin Invest. 1995 Jul;96(1):427–437. doi: 10.1172/JCI118053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  27. Robinson K. A., Sens D. A., Buse M. G. Pre-exposure to glucosamine induces insulin resistance of glucose transport and glycogen synthesis in isolated rat skeletal muscles. Study of mechanisms in muscle and in rat-1 fibroblasts overexpressing the human insulin receptor. Diabetes. 1993 Sep;42(9):1333–1346. doi: 10.2337/diab.42.9.1333. [DOI] [PubMed] [Google Scholar]
  28. Robinson K. A., Weinstein M. L., Lindenmayer G. E., Buse M. G. Effects of diabetes and hyperglycemia on the hexosamine synthesis pathway in rat muscle and liver. Diabetes. 1995 Dec;44(12):1438–1446. doi: 10.2337/diab.44.12.1438. [DOI] [PubMed] [Google Scholar]
  29. Simpson I. A., Yver D. R., Hissin P. J., Wardzala L. J., Karnieli E., Salans L. B., Cushman S. W. Insulin-stimulated translocation of glucose transporters in the isolated rat adipose cells: characterization of subcellular fractions. Biochim Biophys Acta. 1983 Dec 19;763(4):393–407. doi: 10.1016/0167-4889(83)90101-5. [DOI] [PubMed] [Google Scholar]
  30. Smith M. M., Robinson F. W., Watanabe T., Kono T. Partial characterization of the glucose transport activity in the Golgi-rich fraction of fat cells. Biochim Biophys Acta. 1984 Aug 22;775(2):121–128. doi: 10.1016/0005-2736(84)90162-7. [DOI] [PubMed] [Google Scholar]
  31. Stanley K. K., Luzio J. P. The subcellular distribution of 5'-nucleotidase in isolated fat-cells and liver cells from rat [proceedings]. Biochem Soc Trans. 1979 Apr;7(2):361–362. doi: 10.1042/bst0070361. [DOI] [PubMed] [Google Scholar]
  32. Stephens J. M., Pilch P. F. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr Rev. 1995 Aug;16(4):529–546. doi: 10.1210/edrv-16-4-529. [DOI] [PubMed] [Google Scholar]
  33. Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A. 1980 May;77(5):2542–2545. doi: 10.1073/pnas.77.5.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Taylor S. I., Kadowaki T., Kadowaki H., Accili D., Cama A., McKeon C. Mutations in insulin-receptor gene in insulin-resistant patients. Diabetes Care. 1990 Mar;13(3):257–279. doi: 10.2337/diacare.13.3.257. [DOI] [PubMed] [Google Scholar]
  35. Thoidis G., Kotliar N., Pilch P. F. Immunological analysis of GLUT4-enriched vesicles. Identification of novel proteins regulated by insulin and diabetes. J Biol Chem. 1993 Jun 5;268(16):11691–11696. [PubMed] [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Traxinger R. R., Marshall S. Suitability of 2-deoxyglucose for measuring initial rates of glucose uptake in isolated adipocytes. Biochem Int. 1990 Nov;22(4):607–615. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES