Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):445–451. doi: 10.1042/bj3300445

Sustained phospholipase D activation in response to angiotensin II but not carbachol in bovine adrenal glomerulosa cells.

E Jung 1, S Betancourt-Calle 1, R Mann-Blakeney 1, T Foushee 1, C M Isales 1, W B Bollag 1
PMCID: PMC1219159  PMID: 9461542

Abstract

We have demonstrated previously that in bovine adrenal glomerulosa cells, phospholipase D (PLD) activity can indirectly result in the generation of sn-1,2-diacylglycerol (DAG) through its production of phosphatidic acid (PA) and the subsequent action of PA phosphohydrolase. Furthermore, the PLD-generated DAG can trigger aldosterone secretion. Therefore, we characterized PLD activation by two agonists, angiotensin II (Ang II) and carbachol, to determine if the activity of the enzyme might underlie sustained aldosterone secretion. We determined that Ang II-induced PLD activation occurred via the angiotensin-1 receptor (AT1), and that a specific AT1 antagonist, losartan, inhibited this activation, whereas the same concentration of the AT2-specific antagonist, PD 123319, had no effect. Ang II activated PLD with a dose dependence similar to that observed for aldosterone secretion, with slight increases in activity induced by 0.1 nM Ang II and maximal activation at 10 nM. We also found that Ang II induced a sustained activation of PLD, but that the effect of carbachol, a stable analogue of acetylcholine, was transient; PLD activity increased within 5 min of exposure to carbachol but then ceased by 15 min. Higher carbachol concentrations were also unable to sustain PLD activation. These results suggest that the Ang II-elicited activation of PLD is associated with a sustained increase in aldosterone secretion from glomerulosa cells and further provide the first evidence, to our knowledge, of differences in the kinetics of PLD activation in response to two physiologically relevant agonists. Finally, we speculate that this disparity correlates with different functional responses induced by the two agents.

Full Text

The Full Text of this article is available as a PDF (327.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balboa M. A., Insel P. A. Nuclear phospholipase D in Madin-Darby canine kidney cells. Guanosine 5'-O-(thiotriphosphate)-stimulated activation is mediated by RhoA and is downstream of protein kinase C. J Biol Chem. 1995 Dec 15;270(50):29843–29847. doi: 10.1074/jbc.270.50.29843. [DOI] [PubMed] [Google Scholar]
  2. Barrett P. Q., Isales C. M., Bollag W. B., McCarthy R. T. Ca2+ channels and aldosterone secretion: modulation by K+ and atrial natriuretic peptide. Am J Physiol. 1991 Oct;261(4 Pt 2):F706–F719. doi: 10.1152/ajprenal.1991.261.4.F706. [DOI] [PubMed] [Google Scholar]
  3. Barrett P. Q., Kojima I., Kojima K., Zawalich K., Isales C. M., Rasmussen H. Short term memory in the calcium messenger system. Evidence for a sustained activation of protein kinase C in adrenal glomerulosa cells. Biochem J. 1986 Sep 15;238(3):905–912. doi: 10.1042/bj2380905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Av P., Eli Y., Schmidt U. S., Tobias K. E., Liscovitch M. Distinct mechanisms of phospholipase D activation and attenuation utilized by different mitogens in NIH-3T3 fibroblasts. Eur J Biochem. 1993 Jul 15;215(2):455–463. doi: 10.1111/j.1432-1033.1993.tb18054.x. [DOI] [PubMed] [Google Scholar]
  5. Billah M. M., Eckel S., Mullmann T. J., Egan R. W., Siegel M. I. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J Biol Chem. 1989 Oct 15;264(29):17069–17077. [PubMed] [Google Scholar]
  6. Bollag W. B., Barrett P. Q., Isales C. M., Liscovitch M., Rasmussen H. A potential role for phospholipase-D in the angiotensin-II-induced stimulation of aldosterone secretion from bovine adrenal glomerulosa cells. Endocrinology. 1990 Sep;127(3):1436–1443. doi: 10.1210/endo-127-3-1436. [DOI] [PubMed] [Google Scholar]
  7. Bollag W. B., Barrett P. Q., Isales C. M., Liscovitch M., Rasmussen H. Signal transduction mechanisms involved in carbachol-induced aldosterone secretion from bovine adrenal glomerulosa cells. Mol Cell Endocrinol. 1992 Jul;86(1-2):93–101. doi: 10.1016/0303-7207(92)90179-a. [DOI] [PubMed] [Google Scholar]
  8. Bollag W. B., Barrett P. Q., Isales C. M., Rasmussen H. Angiotensin-II-induced changes in diacylglycerol levels and their potential role in modulating the steroidogenic response. Endocrinology. 1991 Jan;128(1):231–241. doi: 10.1210/endo-128-1-231. [DOI] [PubMed] [Google Scholar]
  9. Cesnjaj M., Zheng L., Catt K. J., Stojilkovic S. S. Dependence of stimulus-transcription coupling on phospholipase D in agonist-stimulated pituitary cells. Mol Biol Cell. 1995 Aug;6(8):1037–1047. doi: 10.1091/mbc.6.8.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chiou C. Y., Kifor I., Moore T. J., Williams G. H. The effect of losartan on potassium-stimulated aldosterone secretion in vitro. Endocrinology. 1994 Jun;134(6):2371–2375. doi: 10.1210/endo.134.6.8194463. [DOI] [PubMed] [Google Scholar]
  11. Clark B. J., Wells J., King S. R., Stocco D. M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994 Nov 11;269(45):28314–28322. [PubMed] [Google Scholar]
  12. Conricode K. M., Brewer K. A., Exton J. H. Activation of phospholipase D by protein kinase C. Evidence for a phosphorylation-independent mechanism. J Biol Chem. 1992 Apr 15;267(11):7199–7202. [PubMed] [Google Scholar]
  13. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  14. Fern R. J., Hahm M. S., Lu H. K., Liu L. P., Gorelick F. S., Barrett P. Q. Ca2+/calmodulin-dependent protein kinase II activation and regulation of adrenal glomerulosa Ca2+ signaling. Am J Physiol. 1995 Dec;269(6 Pt 2):F751–F760. doi: 10.1152/ajprenal.1995.269.6.F751. [DOI] [PubMed] [Google Scholar]
  15. Hein L., Barsh G. S., Pratt R. E., Dzau V. J., Kobilka B. K. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995 Oct 26;377(6551):744–747. doi: 10.1038/377744a0. [DOI] [PubMed] [Google Scholar]
  16. Hunyady L., Baukal A. J., Bor M., Ely J. A., Catt K. J. Regulation of 1,2-diacylglycerol production by angiotensin-II in bovine adrenal glomerulosa cells. Endocrinology. 1990 Feb;126(2):1001–1008. doi: 10.1210/endo-126-2-1001. [DOI] [PubMed] [Google Scholar]
  17. Ichiki T., Labosky P. A., Shiota C., Okuyama S., Imagawa Y., Fogo A., Niimura F., Ichikawa I., Hogan B. L., Inagami T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995 Oct 26;377(6551):748–750. doi: 10.1038/377748a0. [DOI] [PubMed] [Google Scholar]
  18. Isales C. M., Bollag W. B., Kiernan L. C., Barrett P. Q. Effect of ANP on sustained aldosterone secretion stimulated by angiotensin II. Am J Physiol. 1989 Jan;256(1 Pt 1):C89–C95. doi: 10.1152/ajpcell.1989.256.1.C89. [DOI] [PubMed] [Google Scholar]
  19. Kojima I., Kawamura N., Shibata H. Rate of calcium entry determines the rapid changes in protein kinase C activity in angiotensin II-stimulated adrenal glomerulosa cells. Biochem J. 1994 Feb 1;297(Pt 3):523–528. doi: 10.1042/bj2970523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kojima I., Kojima K., Shibata H., Ogata E. Mechanism of cholinergic stimulation of aldosterone secretion in bovine adrenal glomerulosa cells. Endocrinology. 1986 Jul;119(1):284–291. doi: 10.1210/endo-119-1-284. [DOI] [PubMed] [Google Scholar]
  21. Kurscheid-Reich D., Throckmorton D. C., Rasmussen H. Serotonin activates phospholipase D in rat mesangial cells. Am J Physiol. 1995 Jun;268(6 Pt 2):F997–1003. doi: 10.1152/ajprenal.1995.268.6.F997. [DOI] [PubMed] [Google Scholar]
  22. Liscovitch M. Crosstalk among multiple signal-activated phospholipases. Trends Biochem Sci. 1992 Oct;17(10):393–399. doi: 10.1016/0968-0004(92)90007-v. [DOI] [PubMed] [Google Scholar]
  23. Martin T. W. Formation of diacylglycerol by a phospholipase D-phosphatidate phosphatase pathway specific for phosphatidylcholine in endothelial cells. Biochim Biophys Acta. 1988 Oct 14;962(3):282–296. doi: 10.1016/0005-2760(88)90258-5. [DOI] [PubMed] [Google Scholar]
  24. Moehren G., Gustavsson L., Hoek J. B. Activation and desensitization of phospholipase D in intact rat hepatocytes. J Biol Chem. 1994 Jan 14;269(2):838–848. [PubMed] [Google Scholar]
  25. Nakano S., Carvallo P., Rocco S., Aguilera G. Role of protein kinase C on the steroidogenic effect of angiotensin II in the rat adrenal glomerulosa cell. Endocrinology. 1990 Jan;126(1):125–133. doi: 10.1210/endo-126-1-125. [DOI] [PubMed] [Google Scholar]
  26. Natarajan R., Stern N., Nadler J. Diacylglycerol provides arachidonic acid for lipoxygenase products that mediate angiotensin II-induced aldosterone synthesis. Biochem Biophys Res Commun. 1988 Oct 31;156(2):717–724. doi: 10.1016/s0006-291x(88)80902-1. [DOI] [PubMed] [Google Scholar]
  27. Nieto M., Kennedy E., Goldstein D., Brown J. H. Rapid heterologous desensitization of muscarinic and thrombin receptor-mediated phospholipase D activation. Mol Pharmacol. 1994 Sep;46(3):406–413. [PubMed] [Google Scholar]
  28. Preiss J. E., Loomis C. R., Bell R. M., Niedel J. E. Quantitative measurement of sn-1,2-diacylglycerols. Methods Enzymol. 1987;141:294–300. doi: 10.1016/0076-6879(87)41077-x. [DOI] [PubMed] [Google Scholar]
  29. Rasmussen H., Isales C. M., Calle R., Throckmorton D., Anderson M., Gasalla-Herraiz J., McCarthy R. Diacylglycerol production, Ca2+ influx, and protein kinase C activation in sustained cellular responses. Endocr Rev. 1995 Oct;16(5):649–681. doi: 10.1210/edrv-16-5-649. [DOI] [PubMed] [Google Scholar]
  30. Smith R. D., Timmermans P. B. Human angiotensin receptor subtypes. Curr Opin Nephrol Hypertens. 1994 Jan;3(1):112–122. doi: 10.1097/00041552-199401000-00016. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES