Abstract
Reports on the lethal activity of animal antibiotic peptides have largely focused on bacterial rather than eukaryotic targets. In these, involvement of internal organelles as well as mechanisms different from those of prokaryotic cells have been described. CA(1-8)M(1-18) is a synthetic cecropin A-melittin hybrid peptide with leishmanicidal activity. Using Leishmania donovani promastigotes as a model system we have studied the mechanism of action of CA(1-8)M(1-18), its two parental peptides and two analogues. At micromolar concentration CA(1-8)M(1-18) induces a fast permeability to H+/OH-, collapse of membrane potential and morphological damage to the plasma membrane. Effects on other organelles are related to the loss of internal homeostasis of the parasite rather than to a direct effect of the peptide. Despite the fast kinetics of the process, the parasite is able to deactivate in part the effect of the peptide, as shown by the higher activity of the d-enantiomer of CA(1-8)M(1-18). Electrostatic interaction between the peptide and the promastigote membrane, the first event in the lethal sequence, is inhibited by polyanionic polysaccharides, including its own lipophosphoglycan. Thus, in common with bacteria, the action of CA(1-8)M(1-18) on Leishmania promastigotes has the same plasma membrane as target, but is unique in that different peptides show patterns of activity that resemble those observed on eukaryotic cells.
Full Text
The Full Text of this article is available as a PDF (472.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aley S. B., Zimmerman M., Hetsko M., Selsted M. E., Gillin F. D. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect Immun. 1994 Dec;62(12):5397–5403. doi: 10.1128/iai.62.12.5397-5403.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andreu D., Merrifield R. B., Steiner H., Boman H. G. N-terminal analogues of cecropin A: synthesis, antibacterial activity, and conformational properties. Biochemistry. 1985 Mar 26;24(7):1683–1688. doi: 10.1021/bi00328a017. [DOI] [PubMed] [Google Scholar]
- Andreu D., Ubach J., Boman A., Wåhlin B., Wade D., Merrifield R. B., Boman H. G. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett. 1992 Jan 20;296(2):190–194. doi: 10.1016/0014-5793(92)80377-s. [DOI] [PubMed] [Google Scholar]
- Barra D., Simmaco M. Amphibian skin: a promising resource for antimicrobial peptides. Trends Biotechnol. 1995 Jun;13(6):205–209. doi: 10.1016/S0167-7799(00)88947-7. [DOI] [PubMed] [Google Scholar]
- Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
- Boman H. G., Wade D., Boman I. A., Wåhlin B., Merrifield R. B. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 1989 Dec 18;259(1):103–106. doi: 10.1016/0014-5793(89)81505-4. [DOI] [PubMed] [Google Scholar]
- Campo F. F., Hernández-Asensio M., Ramírez J. M. Transport of alpha-methyl glucoside in mutants of Escherichia coli K12 deficient in Ca2+, Mg2+-activated adenosine triphosphatase. Biochem Biophys Res Commun. 1975 Apr 21;63(4):1099–1105. doi: 10.1016/0006-291x(75)90682-8. [DOI] [PubMed] [Google Scholar]
- Christensen B., Fink J., Merrifield R. B., Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5072–5076. doi: 10.1073/pnas.85.14.5072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cruciani R. A., Barker J. L., Zasloff M., Chen H. C., Colamonici O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3792–3796. doi: 10.1073/pnas.88.9.3792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
- Durvasula R. V., Gumbs A., Panackal A., Kruglov O., Aksoy S., Merrifield R. B., Richards F. F., Beard C. B. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3274–3278. doi: 10.1073/pnas.94.7.3274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Díaz-Achirica P., Prieto S., Ubach J., Andreu D., Rial E., Rivas L. Permeabilization of the mitochondrial inner membrane by short cecropin-A-melittin hybrid peptides. Eur J Biochem. 1994 Aug 15;224(1):257–263. doi: 10.1111/j.1432-1033.1994.tb20019.x. [DOI] [PubMed] [Google Scholar]
- Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem. 1984;53:595–623. doi: 10.1146/annurev.bi.53.070184.003115. [DOI] [PubMed] [Google Scholar]
- Fehlbaum P., Bulet P., Michaut L., Lagueux M., Broekaert W. F., Hetru C., Hoffmann J. A. Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem. 1994 Dec 30;269(52):33159–33163. [PubMed] [Google Scholar]
- Fink J., Merrifield R. B., Boman A., Boman H. G. The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity. J Biol Chem. 1989 Apr 15;264(11):6260–6267. [PubMed] [Google Scholar]
- Fisher P. J., Prendergast F. G., Ehrhardt M. R., Urbauer J. L., Wand A. J., Sedarous S. S., McCormick D. J., Buckley P. J. Calmodulin interacts with amphiphilic peptides composed of all D-amino acids. Nature. 1994 Apr 14;368(6472):651–653. doi: 10.1038/368651a0. [DOI] [PubMed] [Google Scholar]
- Hancock R. E., Falla T., Brown M. Cationic bactericidal peptides. Adv Microb Physiol. 1995;37:135–175. doi: 10.1016/s0065-2911(08)60145-9. [DOI] [PubMed] [Google Scholar]
- Hergannan J. A., Rechhart J. V. Drosophila immunity. Trends Cell Biol. 1997 Aug;7(8):309–316. doi: 10.1016/S0962-8924(97)01087-8. [DOI] [PubMed] [Google Scholar]
- Hernandez C., Mor A., Dagger F., Nicolas P., Hernandez A., Benedetti E. L., Dunia I. Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol. 1992 Dec;59(2):414–424. [PubMed] [Google Scholar]
- Higashijima T., Uzu S., Nakajima T., Ross E. M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem. 1988 May 15;263(14):6491–6494. [PubMed] [Google Scholar]
- Homans S. W., Mehlert A., Turco S. J. Solution structure of the lipophosphoglycan of Leishmania donovani. Biochemistry. 1992 Jan 28;31(3):654–661. doi: 10.1021/bi00118a004. [DOI] [PubMed] [Google Scholar]
- Hugosson M., Andreu D., Boman H. G., Glaser E. Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import. Eur J Biochem. 1994 Aug 1;223(3):1027–1033. doi: 10.1111/j.1432-1033.1994.tb19081.x. [DOI] [PubMed] [Google Scholar]
- Jaynes J. M., Julian G. R., Jeffers G. W., White K. L., Enright F. M. In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines. Pept Res. 1989 Mar-Apr;2(2):157–160. [PubMed] [Google Scholar]
- Kiderlen A. F., Kaye P. M. A modified colorimetric assay of macrophage activation for intracellular cytotoxicity against Leishmania parasites. J Immunol Methods. 1990 Feb 20;127(1):11–18. doi: 10.1016/0022-1759(90)90334-r. [DOI] [PubMed] [Google Scholar]
- Lichtenstein A. K., Ganz T., Nguyen T. M., Selsted M. E., Lehrer R. I. Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity. J Immunol. 1988 Apr 15;140(8):2686–2694. [PubMed] [Google Scholar]
- Lichtenstein A. Mechanism of mammalian cell lysis mediated by peptide defensins. Evidence for an initial alteration of the plasma membrane. J Clin Invest. 1991 Jul;88(1):93–100. doi: 10.1172/JCI115310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maloy W. L., Kari U. P. Structure-activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–122. doi: 10.1002/bip.360370206. [DOI] [PubMed] [Google Scholar]
- Mancheño J. M., Oñaderra M., Martínez del Pozo A., Díaz-Achirica P., Andreu D., Rivas L., Gavilanes J. G. Release of lipid vesicle contents by an antibacterial cecropin A-melittin hybrid peptide. Biochemistry. 1996 Jul 30;35(30):9892–9899. doi: 10.1021/bi953058c. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Sugishita K., Fujii N., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995 Mar 14;34(10):3423–3429. doi: 10.1021/bi00010a034. [DOI] [PubMed] [Google Scholar]
- Miao L., Stafford A., Nir S., Turco S. J., Flanagan T. D., Epand R. M. Potent inhibition of viral fusion by the lipophosphoglycan of Leishmania donovani. Biochemistry. 1995 Apr 11;34(14):4676–4683. doi: 10.1021/bi00014a022. [DOI] [PubMed] [Google Scholar]
- Nicolas P., Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol. 1995;49:277–304. doi: 10.1146/annurev.mi.49.100195.001425. [DOI] [PubMed] [Google Scholar]
- Okada M., Natori S. Mode of action of a bactericidal protein induced in the haemolymph of Sarcophaga peregrina (flesh-fly) larvae. Biochem J. 1984 Aug 15;222(1):119–124. doi: 10.1042/bj2220119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ouellette A. J., Selsted M. E. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J. 1996 Sep;10(11):1280–1289. doi: 10.1096/fasebj.10.11.8836041. [DOI] [PubMed] [Google Scholar]
- Overath P., Stierhof Y. D., Wiese M. Endocytosis and secretion in trypanosomatid parasites - Tumultuous traffic in a pocket. Trends Cell Biol. 1997 Jan;7(1):27–33. doi: 10.1016/S0962-8924(97)10046-0. [DOI] [PubMed] [Google Scholar]
- Pérez-Payá E., Houghten R. A., Blondelle S. E. The role of amphipathicity in the folding, self-association and biological activity of multiple subunit small proteins. J Biol Chem. 1995 Jan 20;270(3):1048–1056. doi: 10.1074/jbc.270.3.1048. [DOI] [PubMed] [Google Scholar]
- Saberwal G., Nagaraj R. Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. Biochim Biophys Acta. 1994 Jun 29;1197(2):109–131. doi: 10.1016/0304-4157(94)90002-7. [DOI] [PubMed] [Google Scholar]
- Sawyer J. G., Martin N. L., Hancock R. E. Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa. Infect Immun. 1988 Mar;56(3):693–698. doi: 10.1128/iai.56.3.693-698.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider P., Bordier C., Etges R. Membrane proteins and enzymes of Leishmania. Subcell Biochem. 1992;18:39–72. doi: 10.1007/978-1-4899-1651-8_2. [DOI] [PubMed] [Google Scholar]
- Shai Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci. 1995 Nov;20(11):460–464. doi: 10.1016/s0968-0004(00)89101-x. [DOI] [PubMed] [Google Scholar]
- Skerlavaj B., Romeo D., Gennaro R. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun. 1990 Nov;58(11):3724–3730. doi: 10.1128/iai.58.11.3724-3730.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner H., Andreu D., Merrifield R. B. Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta. 1988 Apr 7;939(2):260–266. doi: 10.1016/0005-2736(88)90069-7. [DOI] [PubMed] [Google Scholar]
- Turco S. J., Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol. 1992;46:65–94. doi: 10.1146/annurev.mi.46.100192.000433. [DOI] [PubMed] [Google Scholar]
- Velasco M., Díaz-Guerra M. J., Díaz-Achirica P., Andreu D., Rivas L., Boscá L. Macrophage triggering with cecropin A and melittin-derived peptides induces type II nitric oxide synthase expression. J Immunol. 1997 May 1;158(9):4437–4443. [PubMed] [Google Scholar]
- Vercesi A. E., Bernardes C. F., Hoffmann M. E., Gadelha F. R., Docampo R. Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J Biol Chem. 1991 Aug 5;266(22):14431–14434. [PubMed] [Google Scholar]
- Vieira L., Slotki I., Cabantchik Z. I. Chloride conductive pathways which support electrogenic H+ pumping by Leishmania major promastigotes. J Biol Chem. 1995 Mar 10;270(10):5299–5304. doi: 10.1074/jbc.270.10.5299. [DOI] [PubMed] [Google Scholar]
- Vouldoukis I., Shai Y., Nicolas P., Mor A. Broad spectrum antibiotic activity of the skin-PYY. FEBS Lett. 1996 Feb 19;380(3):237–240. doi: 10.1016/0014-5793(96)00050-6. [DOI] [PubMed] [Google Scholar]
- Wade D., Boman A., Wåhlin B., Drain C. M., Andreu D., Boman H. G., Merrifield R. B. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4761–4765. doi: 10.1073/pnas.87.12.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wassef M. K., Fioretti T. B., Dwyer D. M. Lipid analyses of isolated surface membranes of Leishmania donovani promastigotes. Lipids. 1985 Feb;20(2):108–115. doi: 10.1007/BF02534216. [DOI] [PubMed] [Google Scholar]
- Zilberstein D., Dwyer D. M. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1716–1720. doi: 10.1073/pnas.82.6.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zilberstein D., Philosoph H., Gepstein A. Maintenance of cytoplasmic pH and proton motive force in promastigotes of Leishmania donovani. Mol Biochem Parasitol. 1989 Sep;36(2):109–117. doi: 10.1016/0166-6851(89)90183-7. [DOI] [PubMed] [Google Scholar]
- de Waal A., Vaz Gomes A., Mensink A., Grootegoed J. A., Westerhoff H. V. Magainins affect respiratory control, membrane potential and motility of hamster spermatozoa. FEBS Lett. 1991 Nov 18;293(1-2):219–223. doi: 10.1016/0014-5793(91)81191-a. [DOI] [PubMed] [Google Scholar]