Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):461–468. doi: 10.1042/bj3300461

Activation of a phospholipase Cbeta2 deletion mutant by limited proteolysis.

P Schnabel 1, M Camps 1
PMCID: PMC1219161  PMID: 9461544

Abstract

All phosphoinositide-specific phospholipases C (PLC) identified until today exhibit a high degree of similarity within two regions of 170 and 260 residues, respectively, which are designated regions X and Y. The PLCbeta family, including four members designated PLCbeta1, PLCbeta2, PLCbeta3 and PLCbeta4, is regulated by heterotrimeric G proteins. In order to investigate structure-function relationships of PLCbeta2, we expressed PLCbeta2Delta, a deletion mutant of PLCbeta2 which lacks most of the sequence downstream of region Y, in the baculovirus/insect cell system. The mutant was present in both soluble and particulate fractions of Sf9 cells and was demonstrated to be catalytically active and sensitive to betagamma-subunits. Sf9 cytosol containing this mutant was subjected to limited proteolysis by trypsin and S. aureus protease V8, respectively. Immunochemical analysis revealed that both proteases cleaved the enzyme between the regions X and Y. Most interestingly, proteolytic cleavage at this site by both proteases stimulated the catalytic activity of PLC2beta2Delta. The proteolytically activated enzyme was still sensitive to betagamma-subunits and showed an unchanged concentration dependence on Ca2+. Gel filtration chromatography indicated that the fragments generated by cleavage between the regions X and Y were still connected and formed a functional heterodimeric complex. In order to visualize all fragments generated by protease V8, PLCbeta2Delta was purified to homogeneity from Sf9 cytosol. Limited proteolysis of the purified enzyme by S. aureus protease V8 and subsequent SDS/PAGE and silver staining revealed that several cuts take place between the regions X and Y and that the resulting fragments remain intact. We hypothesize that the activating proteolytic cut induces a conformational change of the enzyme which might facilitate hydrolysis of the phospholipid substrate.

Full Text

The Full Text of this article is available as a PDF (467.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Camps M., Carozzi A., Schnabel P., Scheer A., Parker P. J., Gierschik P. Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature. 1992 Dec 17;360(6405):684–686. doi: 10.1038/360684a0. [DOI] [PubMed] [Google Scholar]
  4. Carozzi A. J., Kriz R. W., Webster C., Parker P. J. Identification, purification and characterization of a novel phosphatidylinositol-specific phospholipase C, a third member of the beta subfamily. Eur J Biochem. 1992 Dec 1;210(2):521–529. doi: 10.1111/j.1432-1033.1992.tb17450.x. [DOI] [PubMed] [Google Scholar]
  5. Carozzi A., Camps M., Gierschik P., Parker P. J. Activation of phosphatidylinositol lipid-specific phospholipase C-beta 3 by G-protein beta gamma subunits. FEBS Lett. 1993 Jan 11;315(3):340–342. doi: 10.1016/0014-5793(93)81190-b. [DOI] [PubMed] [Google Scholar]
  6. Cifuentes M. E., Honkanen L., Rebecchi M. J. Proteolytic fragments of phosphoinositide-specific phospholipase C-delta 1. Catalytic and membrane binding properties. J Biol Chem. 1993 Jun 5;268(16):11586–11593. [PubMed] [Google Scholar]
  7. Dietrich A., Meister M., Spicher K., Schultz G., Camps M., Gierschik P. Expression, characterization and purification of soluble G-protein beta gamma dimers composed of defined subunits in baculovirus-infected insect cells. FEBS Lett. 1992 Nov 30;313(3):220–224. doi: 10.1016/0014-5793(92)81195-r. [DOI] [PubMed] [Google Scholar]
  8. Ellis M. V., Carne A., Katan M. Structural requirements of phosphatidylinositol-specific phospholipase C delta 1 for enzyme activity. Eur J Biochem. 1993 Apr 1;213(1):339–347. doi: 10.1111/j.1432-1033.1993.tb17767.x. [DOI] [PubMed] [Google Scholar]
  9. Emori Y., Homma Y., Sorimachi H., Kawasaki H., Nakanishi O., Suzuki K., Takenawa T. A second type of rat phosphoinositide-specific phospholipase C containing a src-related sequence not essential for phosphoinositide-hydrolyzing activity. J Biol Chem. 1989 Dec 25;264(36):21885–21890. [PubMed] [Google Scholar]
  10. Essen L. O., Perisic O., Cheung R., Katan M., Williams R. L. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature. 1996 Apr 18;380(6575):595–602. doi: 10.1038/380595a0. [DOI] [PubMed] [Google Scholar]
  11. Exton J. H. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol. 1996;36:481–509. doi: 10.1146/annurev.pa.36.040196.002405. [DOI] [PubMed] [Google Scholar]
  12. Grobler J. A., Hurley J. H. Expression, characterization, and crystallization of the catalytic core of rat phosphatidylinositide-specific phospholipase C delta 1. Protein Sci. 1996 Apr;5(4):680–686. doi: 10.1002/pro.5560050412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jiang H., Wu D., Simon M. I. Activation of phospholipase C beta 4 by heterotrimeric GTP-binding proteins. J Biol Chem. 1994 Mar 11;269(10):7593–7596. [PubMed] [Google Scholar]
  14. Kuang Y., Wu Y., Smrcka A., Jiang H., Wu D. Identification of a phospholipase C beta2 region that interacts with Gbeta-gamma. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2964–2968. doi: 10.1073/pnas.93.7.2964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lefkowitz R. J. G protein-coupled receptor kinases. Cell. 1993 Aug 13;74(3):409–412. doi: 10.1016/0092-8674(93)80042-d. [DOI] [PubMed] [Google Scholar]
  16. Min D. S., Kim D. M., Lee Y. H., Seo J., Suh P. G., Ryu S. H. Purification of a novel phospholipase C isozyme from bovine cerebellum. J Biol Chem. 1993 Jun 5;268(16):12207–12212. [PubMed] [Google Scholar]
  17. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  18. Park D., Jhon D. Y., Kriz R., Knopf J., Rhee S. G. Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2. J Biol Chem. 1992 Aug 15;267(23):16048–16055. [PubMed] [Google Scholar]
  19. Park D., Jhon D. Y., Lee C. W., Ryu S. H., Rhee S. G. Removal of the carboxyl-terminal region of phospholipase C-beta 1 by calpain abolishes activation by G alpha q. J Biol Chem. 1993 Feb 15;268(5):3710–3714. [PubMed] [Google Scholar]
  20. Rhee S. G., Choi K. D. Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem. 1992 Jun 25;267(18):12393–12396. [PubMed] [Google Scholar]
  21. Ryu S. H., Cho K. S., Lee K. Y., Suh P. G., Rhee S. G. Purification and characterization of two immunologically distinct phosphoinositide-specific phospholipases C from bovine brain. J Biol Chem. 1987 Sep 15;262(26):12511–12518. [PubMed] [Google Scholar]
  22. Schnabel P., Camps M., Carozzi A., Parker P. J., Gierschik P. Mutational analysis of phospholipase C-beta 2. Identification of regions required for membrane association and stimulation by guanine-nucleotide-binding protein beta gamma subunits. Eur J Biochem. 1993 Nov 1;217(3):1109–1115. doi: 10.1111/j.1432-1033.1993.tb18343.x. [DOI] [PubMed] [Google Scholar]
  23. Simões A. P., Schnabel P., Pipkorn R., Camps M., Gierschik P. A peptide corresponding to a potential polyphosphoinositide binding site of phospholipase C-beta 2 enhances its catalytic activity. FEBS Lett. 1993 Oct 4;331(3):248–251. doi: 10.1016/0014-5793(93)80346-v. [DOI] [PubMed] [Google Scholar]
  24. Smrcka A. V., Sternweis P. C. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J Biol Chem. 1993 May 5;268(13):9667–9674. [PubMed] [Google Scholar]
  25. Wu D., Jiang H., Katz A., Simon M. I. Identification of critical regions on phospholipase C-beta 1 required for activation by G-proteins. J Biol Chem. 1993 Feb 15;268(5):3704–3709. [PubMed] [Google Scholar]
  26. Wu D., Katz A., Simon M. I. Activation of phospholipase C beta 2 by the alpha and beta gamma subunits of trimeric GTP-binding protein. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5297–5301. doi: 10.1073/pnas.90.11.5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yu F. X., Sun H. Q., Janmey P. A., Yin H. L. Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J Biol Chem. 1992 Jul 25;267(21):14616–14621. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES