Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):513–519. doi: 10.1042/bj3300513

Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer's beta-amyloid precursor protein.

A Duilio 1, R Faraonio 1, G Minopoli 1, N Zambrano 1, T Russo 1
PMCID: PMC1219167  PMID: 9461550

Abstract

We previously demonstrated that Fe65 protein is one of the ligands of the cytoplasmic domain of beta-amyloid precursor protein (APP). Another ligand of this molecule was recently identified; it is similar to Fe65, so it was named Fe65-like (Fe65L1). Herein we describe the cloning of another Fe65-like cDNA (Fe65L2), similar to Fe65 and to Fe65L1, which encodes a protein of approx. 50 kDa. Its cognate mRNA is expressed in various rat tissues, particularly in brain and testis. The three members of the Fe65 protein family share several structural and functional characteristics. The primary structures of the three proteins can be aligned in three regions corresponding to the protein-protein interaction domains of Fe65 [the protein-protein interaction domain containing two conserved tryptophan residues and the two phosphotyrosine interaction domain/phosphotyrosine binding (PID/PTB) domains], whereas the remaining sequences are poorly related. Like Fe65, Fe65L1 and Fe65L2 genes encode two different protein isoforms, derived from the alternative splicing of a very small exon of only six nucleotides, which results, within the N-terminal PID/PTB domain, in the presence or absence of two acidic/basic amino acids. Fe65L2 is able to interact, both in vitro and in vivo, with the intracellular domain of APP. Also, in the case of APP, another two closely related proteins exist, named beta-amyloid precursor-like protein (APLP)1 and APLP2: by using the interaction trap procedure we observed that both Fe65 and Fe65L2 interact with APP, APLP1 or APLP2, although with different efficiencies.

Full Text

The Full Text of this article is available as a PDF (709.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaikie P., Immanuel D., Wu J., Li N., Yajnik V., Margolis B. A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J Biol Chem. 1994 Dec 23;269(51):32031–32034. [PubMed] [Google Scholar]
  2. Borg J. P., Ooi J., Levy E., Margolis B. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol Cell Biol. 1996 Nov;16(11):6229–6241. doi: 10.1128/mcb.16.11.6229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buxbaum J. D., Gandy S. E., Cicchetti P., Ehrlich M. E., Czernik A. J., Fracasso R. P., Ramabhadran T. V., Unterbeck A. J., Greengard P. Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc Natl Acad Sci U S A. 1990 Aug;87(15):6003–6006. doi: 10.1073/pnas.87.15.6003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chow N., Korenberg J. R., Chen X. N., Neve R. L. APP-BP1, a novel protein that binds to the carboxyl-terminal region of the amyloid precursor protein. J Biol Chem. 1996 May 10;271(19):11339–11346. doi: 10.1074/jbc.271.19.11339. [DOI] [PubMed] [Google Scholar]
  5. Citron M., Teplow D. B., Selkoe D. J. Generation of amyloid beta protein from its precursor is sequence specific. Neuron. 1995 Mar;14(3):661–670. doi: 10.1016/0896-6273(95)90323-2. [DOI] [PubMed] [Google Scholar]
  6. Duilio A., Zambrano N., Mogavero A. R., Ammendola R., Cimino F., Russo T. A rat brain mRNA encoding a transcriptional activator homologous to the DNA binding domain of retroviral integrases. Nucleic Acids Res. 1991 Oct 11;19(19):5269–5274. doi: 10.1093/nar/19.19.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feilotter H. E., Hannon G. J., Ruddell C. J., Beach D. Construction of an improved host strain for two hybrid screening. Nucleic Acids Res. 1994 Apr 25;22(8):1502–1503. doi: 10.1093/nar/22.8.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fiore F., Zambrano N., Minopoli G., Donini V., Duilio A., Russo T. The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein. J Biol Chem. 1995 Dec 29;270(52):30853–30856. doi: 10.1074/jbc.270.52.30853. [DOI] [PubMed] [Google Scholar]
  9. Grantham R., Gautier C., Gouy M., Jacobzone M., Mercier R. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res. 1981 Jan 10;9(1):r43–r74. doi: 10.1093/nar/9.1.213-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guénette S. Y., Chen J., Jondro P. D., Tanzi R. E. Association of a novel human FE65-like protein with the cytoplasmic domain of the beta-amyloid precursor protein. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10832–10837. doi: 10.1073/pnas.93.20.10832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haass C., Koo E. H., Mellon A., Hung A. Y., Selkoe D. J. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature. 1992 Jun 11;357(6378):500–503. doi: 10.1038/357500a0. [DOI] [PubMed] [Google Scholar]
  12. Hendriks L., Van Broeckhoven C. A beta A4 amyloid precursor protein gene and Alzheimer's disease. Eur J Biochem. 1996 Apr 1;237(1):6–15. doi: 10.1111/j.1432-1033.1996.0006n.x. [DOI] [PubMed] [Google Scholar]
  13. Higaki J., Quon D., Zhong Z., Cordell B. Inhibition of beta-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron. 1995 Mar;14(3):651–659. doi: 10.1016/0896-6273(95)90322-4. [DOI] [PubMed] [Google Scholar]
  14. Nishimoto I., Okamoto T., Matsuura Y., Takahashi S., Okamoto T., Murayama Y., Ogata E. Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G(o) Nature. 1993 Mar 4;362(6415):75–79. doi: 10.1038/362075a0. [DOI] [PubMed] [Google Scholar]
  15. Okamoto T., Takeda S., Giambarella U., Murayama Y., Matsui T., Katada T., Matsuura Y., Nishimoto I. Intrinsic signaling function of APP as a novel target of three V642 mutations linked to familial Alzheimer's disease. EMBO J. 1996 Aug 1;15(15):3769–3777. [PMC free article] [PubMed] [Google Scholar]
  16. Okamoto T., Takeda S., Murayama Y., Ogata E., Nishimoto I. Ligand-dependent G protein coupling function of amyloid transmembrane precursor. J Biol Chem. 1995 Mar 3;270(9):4205–4208. doi: 10.1074/jbc.270.9.4205. [DOI] [PubMed] [Google Scholar]
  17. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  18. Selkoe D. J. Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci. 1994;17:489–517. doi: 10.1146/annurev.ne.17.030194.002421. [DOI] [PubMed] [Google Scholar]
  19. Simeone A., Duilio A., Fiore F., Acampora D., De Felice C., Faraonio R., Paolocci F., Cimino F., Russo T. Expression of the neuron-specific FE65 gene marks the development of embryo ganglionic derivatives. Dev Neurosci. 1994;16(1-2):53–60. doi: 10.1159/000112088. [DOI] [PubMed] [Google Scholar]
  20. Sudol M., Bork P., Einbond A., Kastury K., Druck T., Negrini M., Huebner K., Lehman D. Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem. 1995 Jun 16;270(24):14733–14741. doi: 10.1074/jbc.270.24.14733. [DOI] [PubMed] [Google Scholar]
  21. Weidemann A., König G., Bunke D., Fischer P., Salbaum J. M., Masters C. L., Beyreuther K. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell. 1989 Apr 7;57(1):115–126. doi: 10.1016/0092-8674(89)90177-3. [DOI] [PubMed] [Google Scholar]
  22. Yankner B. A. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron. 1996 May;16(5):921–932. doi: 10.1016/s0896-6273(00)80115-4. [DOI] [PubMed] [Google Scholar]
  23. Zambrano N., Buxbaum J. D., Minopoli G., Fiore F., De Candia P., De Renzis S., Faraonio R., Sabo S., Cheetham J., Sudol M. Interaction of the phosphotyrosine interaction/phosphotyrosine binding-related domains of Fe65 with wild-type and mutant Alzheimer's beta-amyloid precursor proteins. J Biol Chem. 1997 Mar 7;272(10):6399–6405. doi: 10.1074/jbc.272.10.6399. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES