Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):521–526. doi: 10.1042/bj3300521

Effect of 3,5-di-iodo-L-thyronine on the mitochondrial energy-transduction apparatus.

A Lombardi 1, A Lanni 1, M Moreno 1, M D Brand 1, F Goglia 1
PMCID: PMC1219168  PMID: 9461551

Abstract

We examined the effect of a single injection of 3,5-di-iodo-L-thyronine (3,5-T2) (150 microg/100 g body weight) on the rat liver mitochondrial energy-transduction apparatus. We applied 'top-down' elasticity analysis, which allows identification of the site of action of an effector within a metabolic pathway. This kinetic approach considers oxidative phosphorylation as two blocks of reactions: those generating the mitochondrial inner-membrane potential (DeltaPsi; 'substrate oxidation') and those 'consuming' it ('proton leak' and 'phosphorylating system'). The results show that 1 h after the injection of 3,5-T2, state 4 (respiratory state in which there is no ATP synthesis and the exogenous ADP added has been exhausted) and state 3 (respiratory state in which ATP synthesis is at maximal rate) of mitochondrial respiration were significantly increased (by approx. 30%). 'Top-down' elasticity analysis revealed that these increases were due to the stimulation of reactions involved in substrate oxidation; neither 'proton leak' nor the 'phosphorylating system' was influenced by 3,5-T2. Using the same approach we divided the respiratory chain into two blocks of reactions: cytochrome c reducers and cytochrome c oxidizers. We found that both cytochrome c reducers and cytochrome c oxidizers are targets for 3,5-T2. The rapidity with which 3,5-T2 acts in stimulating the mitochondrial respiration rate suggests to us that di-iodo-L-thyronine may play an important role in the physiological conditions in which rapid energy utilization is required, such as cold exposure or overfeeding.

Full Text

The Full Text of this article is available as a PDF (439.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainscow E. K., Brand M. D. Top-down control analysis of systems with more than one common intermediate. Eur J Biochem. 1995 Aug 1;231(3):579–586. doi: 10.1111/j.1432-1033.1995.tb20735.x. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M., Creagan S., Ingbar S. H., Kipnes R. S. Stimulation of mitochondrial adenosine diphosphate uptake by thyroid hormones. Proc Natl Acad Sci U S A. 1973 Jan;70(1):98–102. doi: 10.1073/pnas.70.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brand M. D. Regulation analysis of energy metabolism. J Exp Biol. 1997 Jan;200(Pt 2):193–202. doi: 10.1242/jeb.200.2.193. [DOI] [PubMed] [Google Scholar]
  4. Brand M. D., Steverding D., Kadenbach B., Stevenson P. M., Hafner R. P. The mechanism of the increase in mitochondrial proton permeability induced by thyroid hormones. Eur J Biochem. 1992 Jun 15;206(3):775–781. doi: 10.1111/j.1432-1033.1992.tb16984.x. [DOI] [PubMed] [Google Scholar]
  5. Brand M. D., Vallis B. P., Kesseler A. The sum of flux control coefficients in the electron-transport chain of mitochondria. Eur J Biochem. 1994 Dec 15;226(3):819–829. doi: 10.1111/j.1432-1033.1994.00819.x. [DOI] [PubMed] [Google Scholar]
  6. Brown G. C., Brand M. D. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex. Biochem J. 1985 Jan 15;225(2):399–405. doi: 10.1042/bj2250399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goglia F., Lanni A., Barth J., Kadenbach B. Interaction of diiodothyronines with isolated cytochrome c oxidase. FEBS Lett. 1994 Jun 13;346(2-3):295–298. doi: 10.1016/0014-5793(94)00476-5. [DOI] [PubMed] [Google Scholar]
  8. Goglia F., Lanni A., Horst C., Moreno M., Thoma R. In vitro binding of 3,5-di-iodo-L-thyronine to rat liver mitochondria. J Mol Endocrinol. 1994 Dec;13(3):275–282. doi: 10.1677/jme.0.0130275. [DOI] [PubMed] [Google Scholar]
  9. Hafner R. P., Brown G. C., Brand M. D. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):313–319. doi: 10.1111/j.1432-1033.1990.tb15405.x. [DOI] [PubMed] [Google Scholar]
  10. Hafner R. P., Brown G. C., Brand M. D. Thyroid-hormone control of state-3 respiration in isolated rat liver mitochondria. Biochem J. 1990 Feb 1;265(3):731–734. doi: 10.1042/bj2650731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hafner R. P., Nobes C. D., McGown A. D., Brand M. D. Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status. Eur J Biochem. 1988 Dec 15;178(2):511–518. doi: 10.1111/j.1432-1033.1988.tb14477.x. [DOI] [PubMed] [Google Scholar]
  12. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  13. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  14. Hoch F. L. Adenine nucleotide translocation in liver mitochondria of hypothyroid rats. Arch Biochem Biophys. 1977 Jan 30;178(2):535–545. doi: 10.1016/0003-9861(77)90224-7. [DOI] [PubMed] [Google Scholar]
  15. Hoch F. L. Lipids and thyroid hormones. Prog Lipid Res. 1988;27(3):199–270. doi: 10.1016/0163-7827(88)90013-6. [DOI] [PubMed] [Google Scholar]
  16. Kacser H., Burns J. A. MOlecular democracy: who shares the controls? Biochem Soc Trans. 1979 Oct;7(5):1149–1160. doi: 10.1042/bst0071149. [DOI] [PubMed] [Google Scholar]
  17. Lanni A., Moreno M., Cioffi M., Goglia F. Effect of 3,3'-di-iodothyronine and 3,5-di-iodothyronine on rat liver mitochondria. J Endocrinol. 1993 Jan;136(1):59–64. doi: 10.1677/joe.0.1360059. [DOI] [PubMed] [Google Scholar]
  18. Lanni A., Moreno M., Cioffi M., Goglia F. Effect of 3,3'-diiodothyronine and 3,5-diiodothyronine on rat liver oxidative capacity. Mol Cell Endocrinol. 1992 Aug;86(3):143–148. doi: 10.1016/0303-7207(92)90138-v. [DOI] [PubMed] [Google Scholar]
  19. Lanni A., Moreno M., Horst C., Lombardi A., Goglia F. Specific binding sites for 3,3'-diiodo-L-thyronine (3,3'-T2) in rat liver mitochondria. FEBS Lett. 1994 Sep 5;351(2):237–240. doi: 10.1016/0014-5793(94)00840-x. [DOI] [PubMed] [Google Scholar]
  20. Lanni A., Moreno M., Lombardi A., Goglia F. Calorigenic effect of diiodothyronines in the rat. J Physiol. 1996 Aug 1;494(Pt 3):831–837. doi: 10.1113/jphysiol.1996.sp021536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moreno M., Lanni A., Lombardi A., Goglia F. How the thyroid controls metabolism in the rat: different roles for triiodothyronine and diiodothyronines. J Physiol. 1997 Dec 1;505(Pt 2):529–538. doi: 10.1111/j.1469-7793.1997.529bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murphy M. P., Brand M. D. The control of electron flux through cytochrome oxidase. Biochem J. 1987 Apr 15;243(2):499–505. doi: 10.1042/bj2430499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mutvei A., Kuzela S., Nelson B. D. Control of mitochondrial transcription by thyroid hormone. Eur J Biochem. 1989 Mar 1;180(1):235–240. doi: 10.1111/j.1432-1033.1989.tb14638.x. [DOI] [PubMed] [Google Scholar]
  24. O'Reilly I., Murphy M. P. Studies on the rapid stimulation of mitochondrial respiration by thyroid hormones. Acta Endocrinol (Copenh) 1992 Dec;127(6):542–546. doi: 10.1530/acta.0.1270542. [DOI] [PubMed] [Google Scholar]
  25. Palacios-Romero R., Mowbray J. Evidence for the rapid direct control both in vivo and in vitro of the efficiency of oxidative phosphorylation by 3,5,3'-tri-iodo-L-thyronine in rats. Biochem J. 1979 Dec 15;184(3):527–538. doi: 10.1042/bj1840527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van Itallie C. M. Thyroid hormone and dexamethasone increase the levels of a messenger ribonucleic acid for a mitochondrially encoded subunit but not for a nuclear-encoded subunit of cytochrome c oxidase. Endocrinology. 1990 Jul;127(1):55–62. doi: 10.1210/endo-127-1-55. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES