Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):527–532. doi: 10.1042/bj3300527

Estimation of total rate of formation of nitric oxide in the rat.

A Sakinis 1, A Wennmalm 1
PMCID: PMC1219169  PMID: 9461552

Abstract

Nitric oxide (NO) is a powerful mediator with important actions in several organ systems. NO is synthesized during the enzymatic conversion of l-arginine and molecular oxygen to L-citrulline. About 90% of the NO formed is degraded to nitrate. Utilizing this information we have developed a method for assessment of the total rate of formation of NO in the rat. Male Wistar rats were kept in a closed-cage system allowing controlled breathing of a mixture of 18O2 and 16O2 in N2 for up to 5h. Blood samples for mass spectrometric analysis of nitrate residues with varying numbers of 18O atoms incorporated were drawn before and during the exposure to 18O2. By comparing the relative incorporation of 18O into nitrate residues to the 16O2/18O2 ratio in the breathing gas mixture in the cage system it was possible to calculate the absolute rate of NO formation in the animal. The rate of formation of NO in anaesthetized rats ranged from 0.33 to 0.85 micromol.kg-1.h-1. The rate of formation did not differ significantly in rats which were awake during the experiment (range 0.36-0.72 micromol.kg-1.h-1). The L-arginine analogue Nomega-nitro-L-arginine methyl ester (L-NAME) dose-dependently inhibited the formation of NO, at a dose of 100mg/kg by more than 99%. The technique presented allows estimation of the total rate of formation of NO in vivo in rats. Application of the technique may yield important information about the physiological and pathophysiological roles of NO. It may also be utilized to evaluate the effect of pharmacological treatment on NO formation.

Full Text

The Full Text of this article is available as a PDF (281.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benthin G., Björkhem I., Breuer O., Sakinis A., Wennmalm A. Transformation of subcutaneous nitric oxide into nitrate in the rat. Biochem J. 1997 May 1;323(Pt 3):853–858. doi: 10.1042/bj3230853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doyle M. P., Hoekstra J. W. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem. 1981 Jul;14(4):351–358. doi: 10.1016/s0162-0134(00)80291-3. [DOI] [PubMed] [Google Scholar]
  3. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  4. Garthwaite J., Charles S. L., Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988 Nov 24;336(6197):385–388. doi: 10.1038/336385a0. [DOI] [PubMed] [Google Scholar]
  5. Iyengar R., Stuehr D. J., Marletta M. A. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6369–6373. doi: 10.1073/pnas.84.18.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jungersten L., Edlund A., Petersson A. S., Wennmalm A. Plasma nitrate as an index of nitric oxide formation in man: analyses of kinetics and confounding factors. Clin Physiol. 1996 Jul;16(4):369–379. doi: 10.1111/j.1475-097x.1996.tb00726.x. [DOI] [PubMed] [Google Scholar]
  7. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wagner D. A., Schultz D. S., Deen W. M., Young V. R., Tannenbaum S. R. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer Res. 1983 Apr;43(4):1921–1925. [PubMed] [Google Scholar]
  9. Wennmalm A., Benthin G., Edlund A., Jungersten L., Kieler-Jensen N., Lundin S., Westfelt U. N., Petersson A. S., Waagstein F. Metabolism and excretion of nitric oxide in humans. An experimental and clinical study. Circ Res. 1993 Dec;73(6):1121–1127. doi: 10.1161/01.res.73.6.1121. [DOI] [PubMed] [Google Scholar]
  10. Wennmalm A., Benthin G., Petersson A. S. Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol. 1992 Jul;106(3):507–508. doi: 10.1111/j.1476-5381.1992.tb14365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yoshida K., Kasama K. Biotransformation of nitric oxide. Environ Health Perspect. 1987 Aug;73:201–205. doi: 10.1289/ehp.8773201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yoshida K., Kasama K., Kitabatake M., Okuda M., Imai M. Metabolic fate of nitric oxide. Int Arch Occup Environ Health. 1980;46(1):71–77. doi: 10.1007/BF00377461. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES