Abstract
The major cellobiose dehydrogenase (oxidase) (CBDH) secreted by the soft-rot thermophilic fungus Humicola insolens during growth on cellulose has been isolated and purified. It was shown to be a haemoflavoprotein with a molecular weight of 92 kDa and a pI of 4.0, capable of oxidizing the anomeric carbon of cellobiose, soluble cellooligosaccharides, lactose, xylobiose and maltose. Possible electron acceptors are 2,6-dichlorophenol-indophenol (DCPIP), Methylene Blue, 3,5-di-t-butyl-1,2-benzoquinone, potassium ferricyanide, cytochrome c and molecular oxygen. The oxidation of the prosthetic groups by oxygen was monitored at 449 nm for the flavin group and at 562 nm for the haem group. The curves were very similar to those of the cellobiose dehydrogenase from Phanerochaete chrysosporium, suggesting a similar mechanism. The pH-optima for the oxidation varied remarkably depending on the electron acceptor. For the organic electron acceptors, the pH-optima ranged from pH 4 for Methylene Blue to pH 7 for DCPIP and the benzoquinone. In the case of the FeIII-containing electron acceptors, the enzyme displayed alkaline pH-optima, in contrast to the properties of cellobiose dehydrogenases from Phanerochaete chrysosporium and Myceliophthora (Sporotrichum) thermophila. The enzyme has optimal activity at 65 degrees C.
Full Text
The Full Text of this article is available as a PDF (336.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayers A. R., Ayers S. B., Eriksson K. E. Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem. 1978 Sep 15;90(1):171–181. doi: 10.1111/j.1432-1033.1978.tb12588.x. [DOI] [PubMed] [Google Scholar]
- Canevascini G. A cellulase assay coupled to cellobiose dehydrogenase. Anal Biochem. 1985 Jun;147(2):419–427. doi: 10.1016/0003-2697(85)90291-x. [DOI] [PubMed] [Google Scholar]
- Canevascini G., Borer P., Dreyer J. L. Cellobiose dehydrogenases of Sporotrichum (Chrysosporium) thermophile. Eur J Biochem. 1991 May 23;198(1):43–52. doi: 10.1111/j.1432-1033.1991.tb15984.x. [DOI] [PubMed] [Google Scholar]
- Coudray M. R., Canevascini G., Meier H. Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile. Biochem J. 1982 Apr 1;203(1):277–284. doi: 10.1042/bj2030277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higham C. W., Gordon-Smith D., Dempsey C. E., Wood P. M. Direct 1H NMR evidence for conversion of beta-D-cellobiose to cellobionolactone by cellobiose dehydrogenase from Phanerochaete chrysosporium. FEBS Lett. 1994 Aug 29;351(1):128–132. doi: 10.1016/0014-5793(94)00847-7. [DOI] [PubMed] [Google Scholar]
- Kjalke M., Andersen M. B., Schneider P., Christensen B., Schülein M., Welinder K. G. Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochim Biophys Acta. 1992 Apr 17;1120(3):248–256. doi: 10.1016/0167-4838(92)90244-8. [DOI] [PubMed] [Google Scholar]
- Kremer S. M., Wood P. M. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem. 1992 Apr 1;205(1):133–138. doi: 10.1111/j.1432-1033.1992.tb16760.x. [DOI] [PubMed] [Google Scholar]
- Kremer S. M., Wood P. M. Production of Fenton's reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium. Eur J Biochem. 1992 Sep 15;208(3):807–814. doi: 10.1111/j.1432-1033.1992.tb17251.x. [DOI] [PubMed] [Google Scholar]
- Morpeth F. F. Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum. Biochem J. 1985 Jun 15;228(3):557–564. doi: 10.1042/bj2280557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raices M., Paifer E., Cremata J., Montesino R., Ståhlberg J., Divne C., Szabó I. J., Henriksson G., Johansson G., Pettersson G. Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungus Phanerochaete chrysosporium. FEBS Lett. 1995 Aug 7;369(2-3):233–238. doi: 10.1016/0014-5793(95)00758-2. [DOI] [PubMed] [Google Scholar]
- Samejima M., Eriksson K. E. A comparison of the catalytic properties of cellobiose:quinone oxidoreductase and cellobiose oxidase from Phanerochaete chrysosporium. Eur J Biochem. 1992 Jul 1;207(1):103–107. doi: 10.1111/j.1432-1033.1992.tb17026.x. [DOI] [PubMed] [Google Scholar]
- Schou C., Rasmussen G., Kaltoft M. B., Henrissat B., Schülein M. Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. Eur J Biochem. 1993 Nov 1;217(3):947–953. doi: 10.1111/j.1432-1033.1993.tb18325.x. [DOI] [PubMed] [Google Scholar]
- Wilson M. T., Hogg N., Jones G. D. Reactions of reduced cellobiose oxidase with oxygen. Is cellobiose oxidase primarily an oxidase? Biochem J. 1990 Aug 15;270(1):265–267. doi: 10.1042/bj2700265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yonetani T. Studies on cytochrome c peroxidase. II. Stoichiometry between enzyme, H2O2, and ferrocytochrome c and enzymic determination of extinction coefficients of cytochrome c. J Biol Chem. 1965 Nov;240(11):4509–4514. [PubMed] [Google Scholar]