Abstract
The functionally related amidohydrolases, including D-hydantoinases, dihydropyrimidinases, allantoinases and dihydro-orotases, share a similar catalytic function of acting on the cyclic amide ring. We aligned 16 amidohydrolases by taking account of the conservative substitution and found a number of highly conserved regions and invariant amino acid residues. Analyses of the secondary structure and hydropathy profile of the enzymes revealed a significant degree of similarity in the conserved regions. Among the regions, the long stretched region I is of particular interest, because it is mainly composed of invariant amino acid residues, showing a similarity of 69% for the enzymes. A search of the protein data bank using the sequence of the conserved region I identified a number of proteins possessing a similar catalytic property, providing a clue that this region might be linked with the catalytic function. As a particular sequence, one aspartic acid and four histidine residues are found to be rigidly conserved in the functionally related amidohydrolases. In order to investigate the significance of the conserved residues, site-directed mutagenesis was carried out typically for the D-hydantoinase gene cloned from Bacillus stearothermophilus SD1. These residues were found to be essential for metal binding as well as catalysis, strongly implying that these invariant residues play a critical role in other enzymes as well as in D-hydantoinase. On the basis of the similar catalytic function and existence of the rigidly conserved sequence, we propose a close evolutionary relationship among the functionally related amido hydrolases, including D-hydantoinase, dihydropyrimidinase, allantoinase and dihydroorotase.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alconada A., Flores A. I., Blanco L., Cuezva J. M. Antibodies against F1-ATPase alpha-subunit recognize mitochondrial chaperones. Evidence for an evolutionary relationship between chaperonin and ATPase protein families. J Biol Chem. 1994 May 6;269(18):13670–13679. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Buckholz R. G., Cooper T. G. The allantoinase (DAL1) gene of Saccharomyces cerevisiae. Yeast. 1991 Dec;7(9):913–923. doi: 10.1002/yea.320070903. [DOI] [PubMed] [Google Scholar]
- Bäckström D., Sjöberg R. M., Lundberg L. G. Nucleotide sequence of the structural gene for dihydroorotase of Escherichia coli K12. Eur J Biochem. 1986 Oct 1;160(1):77–82. doi: 10.1111/j.1432-1033.1986.tb09942.x. [DOI] [PubMed] [Google Scholar]
- Chothia C. Proteins. One thousand families for the molecular biologist. Nature. 1992 Jun 18;357(6379):543–544. doi: 10.1038/357543a0. [DOI] [PubMed] [Google Scholar]
- Eriksson A. E., Liljas A. Refined structure of bovine carbonic anhydrase III at 2.0 A resolution. Proteins. 1993 May;16(1):29–42. doi: 10.1002/prot.340160104. [DOI] [PubMed] [Google Scholar]
- FRITZSON P. The catabolism of C14-labeled uracil, dihydrouracil, and beta-ureidopropionic acid in rat liver slices. J Biol Chem. 1957 May;226(1):223–228. [PubMed] [Google Scholar]
- Gaetano C., Matsuo T., Thiele C. J. Identification and characterization of a retinoic acid-regulated human homologue of the unc-33-like phosphoprotein gene (hUlip) from neuroblastoma cells. J Biol Chem. 1997 May 2;272(18):12195–12201. doi: 10.1074/jbc.272.18.12195. [DOI] [PubMed] [Google Scholar]
- Hamajima N., Matsuda K., Sakata S., Tamaki N., Sasaki M., Nonaka M. A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Gene. 1996 Nov 21;180(1-2):157–163. doi: 10.1016/s0378-1119(96)00445-3. [DOI] [PubMed] [Google Scholar]
- Hayashi S., Jain S., Chu R., Alvares K., Xu B., Erfurth F., Usuda N., Rao M. S., Reddy S. K., Noguchi T. Amphibian allantoinase. Molecular cloning, tissue distribution, and functional expression. J Biol Chem. 1994 Apr 22;269(16):12269–12276. [PubMed] [Google Scholar]
- Jahnke K., Podschun B., Schnackerz K. D., Kautz J., Cook P. F. Acid-base catalytic mechanism of dihydropyrimidinase from pH studies. Biochemistry. 1993 May 18;32(19):5160–5166. doi: 10.1021/bi00070a027. [DOI] [PubMed] [Google Scholar]
- Kautz J., Schnackerz K. D. Purification and properties of 5,6-dihydropyrimidine amidohydrolase from calf liver. Eur J Biochem. 1989 May 1;181(2):431–435. doi: 10.1111/j.1432-1033.1989.tb14743.x. [DOI] [PubMed] [Google Scholar]
- Kim G. J., Park J. H., Lee D. C., Ro H. S., Kim H. S. Primary structure, sequence analysis, and expression of the thermostable D-hydantoinase from Bacillus stearothermophilus SD1. Mol Gen Genet. 1997 Jun;255(2):152–156. doi: 10.1007/pl00008610. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- LaPointe G., Viau S., LeBlanc D., Robert N., Morin A. Cloning, sequencing, and expression in Escherichia coli of the D-hydantoinase gene from Pseudomonas putida and distribution of homologous genes in other microorganisms. Appl Environ Microbiol. 1994 Mar;60(3):888–895. doi: 10.1128/aem.60.3.888-895.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Matsuda K., Sakata S., Kaneko M., Hamajima N., Nonaka M., Sasaki M., Tamaki N. Molecular cloning and sequencing of a cDNA encoding dihydropyrimidinase from the rat liver. Biochim Biophys Acta. 1996 Jun 7;1307(2):140–144. doi: 10.1016/0167-4781(96)00056-5. [DOI] [PubMed] [Google Scholar]
- Morin A., Hummel W., Schütte H., Kula M. R. Characterization of hydantoinase from Pseudomonas fluorescens strain DSM 84. Biotechnol Appl Biochem. 1986 Dec;8(6):564–574. [PubMed] [Google Scholar]
- Mukohara Y., Ishikawa T., Watabe K., Nakamura H. A thermostable hydantoinase of Bacillus stearothermophilus NS1122A: cloning, sequencing, and high expression of the enzyme gene, and some properties of the expressed enzyme. Biosci Biotechnol Biochem. 1994 Sep;58(9):1621–1626. doi: 10.1271/bbb.58.1621. [DOI] [PubMed] [Google Scholar]
- Muruke M. S., Op den Camp H. J., Semesi A. K., van der Drift C. The level of enzymes involved in the allantoin metabolism of Bacillus fastidiosus grown under different conditions. Curr Microbiol. 1995 Jan;30(1):45–47. doi: 10.1007/BF00294523. [DOI] [PubMed] [Google Scholar]
- Ose D. E., Fridovich I. Manganese-containing superoxide dismutase from Escherichia coli: reversible resolution and metal replacements. Arch Biochem Biophys. 1979 May;194(2):360–364. doi: 10.1016/0003-9861(79)90628-3. [DOI] [PubMed] [Google Scholar]
- Runser S. M., Meyer P. C. Purification and biochemical characterization of the hydantoin hydrolyzing enzyme from Agrobacterium species. A hydantoinase with no 5,6-dihydropyrimidine amidohydrolase activity. Eur J Biochem. 1993 May 1;213(3):1315–1324. doi: 10.1111/j.1432-1033.1993.tb17883.x. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmer J. P., Kelly R. E., Rinker A. G., Jr, Zimmermann B. H., Scully J. L., Kim H., Evans D. R. Mammalian dihydroorotase: nucleotide sequence, peptide sequences, and evolution of the dihydroorotase domain of the multifunctional protein CAD. Proc Natl Acad Sci U S A. 1990 Jan;87(1):174–178. doi: 10.1073/pnas.87.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stallings W. C., Pattridge K. A., Strong R. K., Ludwig M. L. The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4-A resolution. J Biol Chem. 1985 Dec 25;260(30):16424–16432. [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornton J. M., Flores T. P., Jones D. T., Swindells M. B. Protein structure. Prediction of progress at last. Nature. 1991 Nov 14;354(6349):105–106. doi: 10.1038/354105a0. [DOI] [PubMed] [Google Scholar]
- Vogels G. D., Van der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev. 1976 Jun;40(2):403–468. doi: 10.1128/br.40.2.403-468.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams N. K., Manthey M. K., Hambley T. W., O'Donoghue S. I., Keegan M., Chapman B. E., Christopherson R. I. Catalysis by hamster dihydroorotase: zinc binding, site-directed mutagenesis, and interaction with inhibitors. Biochemistry. 1995 Sep 12;34(36):11344–11352. doi: 10.1021/bi00036a007. [DOI] [PubMed] [Google Scholar]
- Zimmermann B. H., Kemling N. M., Evans D. R. Function of conserved histidine residues in mammalian dihydroorotase. Biochemistry. 1995 May 30;34(21):7038–7046. doi: 10.1021/bi00021a015. [DOI] [PubMed] [Google Scholar]