Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):599–603. doi: 10.1042/bj3300599

Double-stranded-RNA-activated protein kinase (PKR) regulates Ca2+ stores in Xenopus oocytes.

D Thomas 1, H Y Kim 1, R Morgan 1, M R Hanley 1
PMCID: PMC1219178  PMID: 9480863

Abstract

Expression of the double-stranded-RNA-dependent protein kinase (PKR) in Xenopus oocytes attenuated Ca2+ entry-dependent membrane currents activated by depletion of Ca2+ stores, whereas expression of a dominant-negative PKR mutant had the opposite effect. These results appeared to be due to perturbation of releasable Ca2+ stores, and not actions of PKR on protein synthesis. PKR may thus have novel protein substrates and cellular functions in Ca2+ storage and signalling.

Full Text

The Full Text of this article is available as a PDF (607.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allende C. C., Hinrichs M. V., Santos E., Allende J. E. Oncogenic ras protein induces meiotic maturation of amphibian oocytes in the presence of protein synthesis inhibitors. FEBS Lett. 1988 Jul 18;234(2):426–430. doi: 10.1016/0014-5793(88)80130-3. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  4. Bravo R., Allende J. E. Conditions affecting protein synthesis in amphibian oocytes. Arch Biochem Biophys. 1976 Feb;172(2):648–653. doi: 10.1016/0003-9861(76)90119-3. [DOI] [PubMed] [Google Scholar]
  5. Brostrom C. O., Prostko C. R., Kaufman R. J., Brostrom M. A. Inhibition of translational initiation by activators of the glucose-regulated stress protein and heat shock protein stress response systems. Role of the interferon-inducible double-stranded RNA-activated eukaryotic initiation factor 2alpha kinase. J Biol Chem. 1996 Oct 4;271(40):24995–25002. doi: 10.1074/jbc.271.40.24995. [DOI] [PubMed] [Google Scholar]
  6. DeLisle S., Blondel O., Longo F. J., Schnabel W. E., Bell G. I., Welsh M. J. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca2+ signal of Xenopus oocytes. Am J Physiol. 1996 Apr;270(4 Pt 1):C1255–C1261. doi: 10.1152/ajpcell.1996.270.4.C1255. [DOI] [PubMed] [Google Scholar]
  7. DeLisle S., Marksberry E. W., Bonnett C., Jenkins D. J., Potter B. V., Takahashi M., Tanzawa K. Adenophostin A can stimulate Ca2+ influx without depleting the inositol 1,4,5-trisphosphate-sensitive Ca2+ stores in the Xenopus oocyte. J Biol Chem. 1997 Apr 11;272(15):9956–9961. doi: 10.1074/jbc.272.15.9956. [DOI] [PubMed] [Google Scholar]
  8. Evans J. P., Kay B. K. Biochemical fractionation of oocytes. Methods Cell Biol. 1991;36:133–148. doi: 10.1016/s0091-679x(08)60275-7. [DOI] [PubMed] [Google Scholar]
  9. Ferguson J. E., Hanley M. R. Phosphatidic acid and lysophosphatidic acid stimulate receptor-regulated membrane currents in the Xenopus laevis oocyte. Arch Biochem Biophys. 1992 Sep;297(2):388–392. doi: 10.1016/0003-9861(92)90689-t. [DOI] [PubMed] [Google Scholar]
  10. Hallett M. B., Pettit E. J., Davies E. V. Capacitative Ca2+ influx and a diffusible influx factor. Biochem J. 1996 Mar 15;314(Pt 3):1054–1056. doi: 10.1042/bj3141054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jaconi M., Pyle J., Bortolon R., Ou J., Clapham D. Calcium release and influx colocalize to the endoplasmic reticulum. Curr Biol. 1997 Aug 1;7(8):599–602. doi: 10.1016/s0960-9822(06)00259-4. [DOI] [PubMed] [Google Scholar]
  12. Kim H. Y., Thomas D., Hanley M. R. Chromatographic resolution of an intracellular calcium influx factor from thapsigargin-activated Jurkat cells. Evidence for multiple activities influencing calcium elevation in Xenopus oocytes. J Biol Chem. 1995 Apr 28;270(17):9706–9708. doi: 10.1074/jbc.270.17.9706. [DOI] [PubMed] [Google Scholar]
  13. Lupu-Meiri M., Beit-Or A., Christensen S. B., Oron Y. Calcium entry in Xenopus oocytes: effects of inositol trisphosphate, thapsigargin and DMSO. Cell Calcium. 1993 Feb;14(2):101–110. doi: 10.1016/0143-4160(93)90080-p. [DOI] [PubMed] [Google Scholar]
  14. Parekh A. B., Terlau H., Stühmer W. Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature. 1993 Aug 26;364(6440):814–818. doi: 10.1038/364814a0. [DOI] [PubMed] [Google Scholar]
  15. Petersen C. C., Berridge M. J., Borgese M. F., Bennett D. L. Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J. 1995 Oct 1;311(Pt 1):41–44. doi: 10.1042/bj3110041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Petersen C. C., Berridge M. J. G-protein regulation of capacitative calcium entry may be mediated by protein kinases A and C in Xenopus oocytes. Biochem J. 1995 May 1;307(Pt 3):663–668. doi: 10.1042/bj3070663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Petersen C. C., Berridge M. J. The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes. J Biol Chem. 1994 Dec 23;269(51):32246–32253. [PubMed] [Google Scholar]
  18. Prostko C. R., Dholakia J. N., Brostrom M. A., Brostrom C. O. Activation of the double-stranded RNA-regulated protein kinase by depletion of endoplasmic reticular calcium stores. J Biol Chem. 1995 Mar 17;270(11):6211–6215. doi: 10.1074/jbc.270.11.6211. [DOI] [PubMed] [Google Scholar]
  19. Putney J. W., Jr, Bird G. S. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev. 1993 Oct;14(5):610–631. doi: 10.1210/edrv-14-5-610. [DOI] [PubMed] [Google Scholar]
  20. Putney J. W., Jr, Bird G. S. The signal for capacitative calcium entry. Cell. 1993 Oct 22;75(2):199–201. doi: 10.1016/0092-8674(93)80061-i. [DOI] [PubMed] [Google Scholar]
  21. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  22. Randriamampita C., Tsien R. Y. Degradation of a calcium influx factor (CIF) can be blocked by phosphatase inhibitors or chelation of Ca2+. J Biol Chem. 1995 Jan 6;270(1):29–32. doi: 10.1074/jbc.270.1.29. [DOI] [PubMed] [Google Scholar]
  23. Randriamampita C., Tsien R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. doi: 10.1038/364809a0. [DOI] [PubMed] [Google Scholar]
  24. Sasakawa N., Ferguson J. E., Sharif M., Hanley M. R. Attenuation of agonist-induced desensitization of the rat substance P receptor by microinjection of inositol pentakis-and hexakisphosphates in Xenopus laevis oocytes. Mol Pharmacol. 1994 Aug;46(2):380–385. [PubMed] [Google Scholar]
  25. Sasakawa N., Sharif M., Hanley M. R. Attenuation of agonist-induced desensitization of the rat substance P receptor by progressive truncation of the C-terminus. FEBS Lett. 1994 Jun 27;347(2-3):181–184. doi: 10.1016/0014-5793(94)00532-x. [DOI] [PubMed] [Google Scholar]
  26. Srivastava S. P., Davies M. V., Kaufman R. J. Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J Biol Chem. 1995 Jul 14;270(28):16619–16624. doi: 10.1074/jbc.270.28.16619. [DOI] [PubMed] [Google Scholar]
  27. Thomas D., Hanley M. R. Evaluation of calcium influx factors from stimulated Jurkat T-lymphocytes by microinjection into Xenopus oocytes. J Biol Chem. 1995 Mar 24;270(12):6429–6432. doi: 10.1074/jbc.270.12.6429. [DOI] [PubMed] [Google Scholar]
  28. Thomas D., Kim H. Y., Hanley M. R. Regulation of inositol trisphosphate-induced membrane currents in Xenopus oocytes by a Jurkat cell calcium influx factor. Biochem J. 1996 Sep 1;318(Pt 2):649–656. doi: 10.1042/bj3180649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wu S., Kaufman R. J. A model for the double-stranded RNA (dsRNA)-dependent dimerization and activation of the dsRNA-activated protein kinase PKR. J Biol Chem. 1997 Jan 10;272(2):1291–1296. doi: 10.1074/jbc.272.2.1291. [DOI] [PubMed] [Google Scholar]
  30. Wu S., Kaufman R. J. Double-stranded (ds) RNA binding and not dimerization correlates with the activation of the dsRNA-dependent protein kinase (PKR). J Biol Chem. 1996 Jan 19;271(3):1756–1763. doi: 10.1074/jbc.271.3.1756. [DOI] [PubMed] [Google Scholar]
  31. Zweifach A., Lewis R. S. Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and -independent mechanisms. J Biol Chem. 1995 Jun 16;270(24):14445–14451. doi: 10.1074/jbc.270.24.14445. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES