Abstract
The metabolism of 14C-labelled arginine and ornithine was studied in the isolated, nonrecirculating, perfused rat liver. The catabolism of these amino acids required ornithine aminotransferase since treatment of rats with gabaculine, an inhibitor of this enzyme, decreased substantially the production of 14CO2 from the 14C-labelled amino acids. In the liver, ornithine aminotransferase is restricted to a small population of hepatocytes proximal to the terminal hepatic vein [Kuo, F.C., Hwu, W.L., Valle, D. and Darnell Jr., J.E. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 9468-9472], i.e. the perivenous subpopulation of hepatocytes. Catabolism of arginine requires arginase to convert arginine to ornithine which can then be catabolized through ornithine aminotransferase. The presence of arginase activity in the perivenous hepatocytes was demonstrated by experiments in which livers were perfused with [14C]arginine in both antegrade and retrograde directions. Identical rates of 14CO2 production were obtained in these experiments, a result which could only occur if the process of arginine catabolism through ornithine aminotransferase can be carried out in its entirety in the perivenous cells.
Full Text
The Full Text of this article is available as a PDF (564.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alonso E., Rubio V. Participation of ornithine aminotransferase in the synthesis and catabolism of ornithine in mice. Studies using gabaculine and arginine deprivation. Biochem J. 1989 Apr 1;259(1):131–138. doi: 10.1042/bj2590131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartels H., Linnemann H., Jungermann K. Predominant localization of phosphoenolpyruvate carboxykinase mRNA in the periportal zone of rat liver parenchyma demonstrated by in situ hybridization. FEBS Lett. 1989 May 8;248(1-2):188–194. doi: 10.1016/0014-5793(89)80459-4. [DOI] [PubMed] [Google Scholar]
- Castillo L., Chapman T. E., Sanchez M., Yu Y. M., Burke J. F., Ajami A. M., Vogt J., Young V. R. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7749–7753. doi: 10.1073/pnas.90.16.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castillo L., Sánchez M., Chapman T. E., Ajami A., Burke J. F., Young V. R. The plasma flux and oxidation rate of ornithine adaptively decline with restricted arginine intake. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6393–6397. doi: 10.1073/pnas.91.14.6393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung C. W., Raijman L. Arginine, mitochondrial arginase, and the control of carbamyl phosphate synthesis. Arch Biochem Biophys. 1981 Jul;209(2):643–649. doi: 10.1016/0003-9861(81)90324-6. [DOI] [PubMed] [Google Scholar]
- Dhanakoti S. N., Brosnan J. T., Herzberg G. R., Brosnan M. E. Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol. 1990 Sep;259(3 Pt 1):E437–E442. doi: 10.1152/ajpendo.1990.259.3.E437. [DOI] [PubMed] [Google Scholar]
- Dhanakoti S. N., Brosnan M. E., Herzberg G. R., Brosnan J. T. Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem J. 1992 Mar 1;282(Pt 2):369–375. doi: 10.1042/bj2820369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Geyer J. W., Dabich D. Rapid method for determination of arginase activity in tissue homogenates. Anal Biochem. 1971 Feb;39(2):412–417. doi: 10.1016/0003-2697(71)90431-3. [DOI] [PubMed] [Google Scholar]
- Herzfeld A., Knox W. E. The properties, developmental formation, and estrogen induction of ornithine aminotransferase in rat tissues. J Biol Chem. 1968 Jun 25;243(12):3327–3332. [PubMed] [Google Scholar]
- Häussinger D., Lamers W. H., Moorman A. F. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme. 1992;46(1-3):72–93. doi: 10.1159/000468779. [DOI] [PubMed] [Google Scholar]
- Jung M. J., Seiler N. Enzyme-activated irreversible inhibitors of L-ornithine:2-oxoacid aminotransferase. Demonstration of mechanistic features of the inhibition of ornithine aminotransferase by 4-aminohex-5-ynoic acid and gabaculine and correlation with in vivo activity. J Biol Chem. 1978 Oct 25;253(20):7431–7439. [PubMed] [Google Scholar]
- Jungermann K., Katz N. Functional specialization of different hepatocyte populations. Physiol Rev. 1989 Jul;69(3):708–764. doi: 10.1152/physrev.1989.69.3.708. [DOI] [PubMed] [Google Scholar]
- Kaysen G. A., Strecker H. J. Purification and properties of arginase of rat kidney. Biochem J. 1973 Aug;133(4):779–788. doi: 10.1042/bj1330779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo F. C., Hwu W. L., Valle D., Darnell J. E., Jr Colocalization in pericentral hepatocytes in adult mice and similarity in developmental expression pattern of ornithine aminotransferase and glutamine synthetase mRNA. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9468–9472. doi: 10.1073/pnas.88.21.9468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li G., Regunathan S., Barrow C. J., Eshraghi J., Cooper R., Reis D. J. Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 1994 Feb 18;263(5149):966–969. doi: 10.1126/science.7906055. [DOI] [PubMed] [Google Scholar]
- Quistorff B. Metabolic heterogeneity of liver parenchymal cells. Essays Biochem. 1990;25:83–136. [PubMed] [Google Scholar]
- Rando R. R., Bangerter F. W. The in vivo inhibition of GABA-transaminase by gabaculine. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1276–1281. doi: 10.1016/0006-291x(77)90993-7. [DOI] [PubMed] [Google Scholar]
- Seiler N., Bolkenius F. N., Knödgen B. The influence of catabolic reactions on polyamine excretion. Biochem J. 1985 Jan 1;225(1):219–226. doi: 10.1042/bj2250219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seiler N., Grauffel C., Daune G., Gerhart F. Ornithine aminotransferase activity, liver ornithine concentration and acute ammonia intoxication. Life Sci. 1989;45(11):1009–1019. doi: 10.1016/0024-3205(89)90155-0. [DOI] [PubMed] [Google Scholar]
- Sies H. The use of perfusion of liver and other organs for the study of microsomal electron-transport and cytochrome P-450 systems. Methods Enzymol. 1978;52:48–59. doi: 10.1016/s0076-6879(78)52005-3. [DOI] [PubMed] [Google Scholar]
- Simell O., Takki K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet. 1973 May 12;1(7811):1031–1033. doi: 10.1016/s0140-6736(73)90667-3. [DOI] [PubMed] [Google Scholar]
- Spector E. B., Rice S. C., Cederbaum S. D. Immunologic studies of arginase in tissues of normal human adult and arginase-deficient patients. Pediatr Res. 1983 Dec;17(12):941–944. doi: 10.1203/00006450-198312000-00003. [DOI] [PubMed] [Google Scholar]
- Swain R. R., Briggs S. L. Positive interference with the Jaffé reaction by cephalosporin antibiotics. Clin Chem. 1977 Jul;23(7):1340–1342. [PubMed] [Google Scholar]
- Swick R. W., Tollaksen S. L., Nance S. L., Thomson J. F. The unique distribution of ornithine aminotransferase in rat liver mitochondria. Arch Biochem Biophys. 1970 Jan;136(1):212–218. doi: 10.1016/0003-9861(70)90343-7. [DOI] [PubMed] [Google Scholar]
- Valle D., Walser M., Brusilow S., Kaiser-Kupfer M. I., Takki K. Gyrate atrophy of the choroid and retina. Biochemical considerations and experience with an arginine-restricted diet. Ophthalmology. 1981 Apr;88(4):325–330. doi: 10.1016/s0161-6420(81)35028-3. [DOI] [PubMed] [Google Scholar]
- Vorhaben J. E., Wong L., Campbell J. W. Assay for glutamine synthetase activity. Biochem J. 1973 Dec;135(4):893–896. doi: 10.1042/bj1350893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang T., Lawler A. M., Steel G., Sipila I., Milam A. H., Valle D. Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet. 1995 Oct;11(2):185–190. doi: 10.1038/ng1095-185. [DOI] [PubMed] [Google Scholar]
- Wettstein M., Gerok W., Häussinger D. Endotoxin-induced nitric oxide synthesis in the perfused rat liver: effects of L-arginine and ammonium chloride. Hepatology. 1994 Mar;19(3):641–647. doi: 10.1002/hep.1840190315. [DOI] [PubMed] [Google Scholar]
- Windmueller H. G., Spaeth A. E. Metabolism of absorbed aspartate, asparagine, and arginine by rat small intestine in vivo. Arch Biochem Biophys. 1976 Aug;175(2):670–676. doi: 10.1016/0003-9861(76)90558-0. [DOI] [PubMed] [Google Scholar]