Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):667–674. doi: 10.1042/bj3300667

Selective detergent-extraction from mixed detergent/lipid/protein micelles, using cyclodextrin inclusion compounds: a novel generic approach for the preparation of proteoliposomes.

W J Degrip 1, J Vanoostrum 1, P H Bovee-Geurts 1
PMCID: PMC1219188  PMID: 9480873

Abstract

A novel generic approach is described for the selective extraction of detergents from mixed detergent/lipid/protein micelles for the preparation of proteoliposomes of defined lipid-protein ratio. The approach is based on the much higher affinity of inclusion compounds of the cyclodextrin type for detergents in comparison with bilayer-forming lipids. This approach has distinct advantages over other procedures currently in use. It produces good results with all detergents tested, independent of type and critical micelle concentration, and appears to be generally applicable. It yields nearly quantitative recovery of membrane protein in the proteoliposome fraction. Finally, no large excess of lipid is required; a molar ratio of lipid to protein of 100 to 1 already produces proteoliposomes with functional membrane protein, but higher ratios are well tolerated. The size of the vesicles thus obtained depends on the detergent used. Separation of the resulting proteoliposomes from the detergent-cyclodextrin complexes was most easily achieved by centrifugation through a discontinuous sucrose gradient. A variety of detergents was tested in this procedure on the bovine rod visual pigment rhodopsin in combination with retina lipids. In all cases good yields of proteoliposomes were obtained, which contained fully functional rhodopsin.

Full Text

The Full Text of this article is available as a PDF (402.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applebury M. L., Zuckerman D. M., Lamola A. A., Jovin T. M. Rhodopsin. Purification and recombination with phospholipids assayed by the metarhodopsin I leads to metarhodopsin II transition. Biochemistry. 1974 Aug 13;13(17):3448–3458. doi: 10.1021/bi00714a005. [DOI] [PubMed] [Google Scholar]
  2. Arnis S., Hofmann K. P. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7849–7853. doi: 10.1073/pnas.90.16.7849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Comini S., Olivier P., Riottot M., Duhamel D. Interaction of beta-cyclodextrin with bile acids and their competition with vitamins A and D3 as determined by 1H-NMR spectrometry. Clin Chim Acta. 1994 Aug;228(2):181–194. doi: 10.1016/0009-8981(94)90288-7. [DOI] [PubMed] [Google Scholar]
  4. Connors K. A. Population characteristics of cyclodextrin complex stabilities in aqueous solution. J Pharm Sci. 1995 Jul;84(7):843–848. doi: 10.1002/jps.2600840712. [DOI] [PubMed] [Google Scholar]
  5. Couthon F., Clottes E., Vial C. Refolding of SDS- and thermally denatured MM-creatine kinase using cyclodextrins. Biochem Biophys Res Commun. 1996 Oct 23;227(3):854–860. doi: 10.1006/bbrc.1996.1596. [DOI] [PubMed] [Google Scholar]
  6. De Grip W. J., Daemen F. J., Bonting S. L. Isolation and purification of bovine rhodopsin. Methods Enzymol. 1980;67:301–320. doi: 10.1016/s0076-6879(80)67038-4. [DOI] [PubMed] [Google Scholar]
  7. De Grip W. J., Daemen F. J. Sulfhydryl chemistry of rhodopsin. Methods Enzymol. 1982;81:223–236. doi: 10.1016/s0076-6879(82)81035-5. [DOI] [PubMed] [Google Scholar]
  8. De Grip W. J. Thermal stability of rhodopsin and opsin in some novel detergents. Methods Enzymol. 1982;81:256–265. doi: 10.1016/s0076-6879(82)81040-9. [DOI] [PubMed] [Google Scholar]
  9. Delange F., Merkx M., Bovee-Geurts P. H., Pistorius A. M., Degrip W. J. Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength--evidence for a surface-charge effect. Eur J Biochem. 1997 Jan 15;243(1-2):174–180. doi: 10.1111/j.1432-1033.1997.0174a.x. [DOI] [PubMed] [Google Scholar]
  10. Emeis D., Kühn H., Reichert J., Hofmann K. P. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett. 1982 Jun 21;143(1):29–34. doi: 10.1016/0014-5793(82)80266-4. [DOI] [PubMed] [Google Scholar]
  11. Fahmy K., Sakmar T. P. Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Biochemistry. 1993 Jul 20;32(28):7229–7236. doi: 10.1021/bi00079a020. [DOI] [PubMed] [Google Scholar]
  12. Gadre A., Rüdiger V., Schneider H. J., Connors K. A. Binding of cyclodextrins to alicyclic and aromatic substrates: complex formation of alpha-, beta-, and gamma-cyclodextrins with substituted cyclohexanecarboxylic acids and phenylalkanoic acids. J Pharm Sci. 1997 Feb;86(2):236–243. doi: 10.1021/js960202m. [DOI] [PubMed] [Google Scholar]
  13. Karuppiah N., Sharma A. Cyclodextrins as protein folding aids. Biochem Biophys Res Commun. 1995 Jun 6;211(1):60–66. doi: 10.1006/bbrc.1995.1778. [DOI] [PubMed] [Google Scholar]
  14. Kostense A. S., van Helden S. P., Janssen L. H. Modeling and conformation analysis of beta-cyclodextrin complexes. J Comput Aided Mol Des. 1991 Dec;5(6):525–543. doi: 10.1007/BF00135312. [DOI] [PubMed] [Google Scholar]
  15. König B., Welte W., Hofmann K. P. Photoactivation of rhodopsin and interaction with transducin in detergent micelles. Effect of 'doping' with steroid molecules. FEBS Lett. 1989 Oct 23;257(1):163–166. doi: 10.1016/0014-5793(89)81811-3. [DOI] [PubMed] [Google Scholar]
  16. Laurent S., Ivanova M. G., Pioch D., Graille J., Verger R. Interactions between beta-cyclodextrin and insoluble glyceride monomolecular films at the argon/water interface: application to lipase kinetics. Chem Phys Lipids. 1994 Mar 31;70(1):35–42. doi: 10.1016/0009-3084(94)90045-0. [DOI] [PubMed] [Google Scholar]
  17. Liebman P. A., Evanczuk A. T. Real time assay of rod disk membrane cGMP phosphodiesterase and its controller enzymes. Methods Enzymol. 1982;81:532–542. doi: 10.1016/s0076-6879(82)81074-4. [DOI] [PubMed] [Google Scholar]
  18. López-Nicolás J. M., Bru R., Sánchez-Ferrer A., García-Carmona F. Use of 'soluble lipids' for biochemical processes: linoleic acid-cyclodextrin inclusion complexes in aqueous solutions. Biochem J. 1995 May 15;308(Pt 1):151–154. doi: 10.1042/bj3080151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Neufeld E. B., Cooney A. M., Pitha J., Dawidowicz E. A., Dwyer N. K., Pentchev P. G., Blanchette-Mackie E. J. Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem. 1996 Aug 30;271(35):21604–21613. doi: 10.1074/jbc.271.35.21604. [DOI] [PubMed] [Google Scholar]
  20. Phillips W. J., Cerione R. A. The intrinsic fluorescence of the alpha subunit of transducin. Measurement of receptor-dependent guanine nucleotide exchange. J Biol Chem. 1988 Oct 25;263(30):15498–15505. [PubMed] [Google Scholar]
  21. Pistorius A. M., Stekhoven F. M., Bovee-Geurts P. H., de Grip W. J. Quantitative analysis of residual detergent in proteoliposomes by Fourier transform infrared spectroscopy. Anal Biochem. 1994 Aug 15;221(1):48–52. doi: 10.1006/abio.1994.1376. [DOI] [PubMed] [Google Scholar]
  22. Racker E. Reconstitution of membrane processes. Methods Enzymol. 1979;55:699–711. doi: 10.1016/0076-6879(79)55078-2. [DOI] [PubMed] [Google Scholar]
  23. Rigaud J. L., Pitard B., Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta. 1995 Oct 10;1231(3):223–246. doi: 10.1016/0005-2728(95)00091-v. [DOI] [PubMed] [Google Scholar]
  24. Rozema D., Gellman S. H. Artificial chaperone-assisted refolding of carbonic anhydrase B. J Biol Chem. 1996 Feb 16;271(7):3478–3487. doi: 10.1074/jbc.271.7.3478. [DOI] [PubMed] [Google Scholar]
  25. Silvius J. R. Solubilization and functional reconstitution of biomembrane components. Annu Rev Biophys Biomol Struct. 1992;21:323–348. doi: 10.1146/annurev.bb.21.060192.001543. [DOI] [PubMed] [Google Scholar]
  26. Surrey T., Jähnig F. Refolding and oriented insertion of a membrane protein into a lipid bilayer. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7457–7461. doi: 10.1073/pnas.89.16.7457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thompson D. O. Cyclodextrins--enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug Carrier Syst. 1997;14(1):1–104. [PubMed] [Google Scholar]
  28. Yang Q., Lundahl P. Steric immobilization of liposomes in chromatographic gel beads and incorporation of integral membrane proteins into their lipid bilayers. Anal Biochem. 1994 Apr;218(1):210–221. doi: 10.1006/abio.1994.1162. [DOI] [PubMed] [Google Scholar]
  29. Zukowski J., Sybilska D., Bojarski J., Szejtli J. Resolution of chiral barbiturates into enantiomers by reversed-phase high-performance liquid chromatography using methylated beta-cyclodextrins. J Chromatogr. 1988 Feb 19;436(3):381–390. doi: 10.1016/s0021-9673(00)94597-7. [DOI] [PubMed] [Google Scholar]
  30. de Grip W. J., Gillespie J., Rothschild K. J. Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study. Biochim Biophys Acta. 1985 Aug 28;809(1):97–106. doi: 10.1016/0005-2728(85)90172-0. [DOI] [PubMed] [Google Scholar]
  31. de Grip W. J., van Oostrum J., Bovee-Geurts P. H., van der Steen R., van Amsterdam L. J., Groesbeek M., Lugtenburg J. 10,20-Methanorhodopsins: (7E,9E,13E)-10,20-methanorhodopsin and (7E,9Z,13Z)-10,20-methanorhodopsin. 11-cis-locked rhodopsin analog pigments with unusual thermal and photo-stability. Eur J Biochem. 1990 Jul 20;191(1):211–220. doi: 10.1111/j.1432-1033.1990.tb19112.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES