Abstract
The causal relationships between cytosolic free-Ca2+ concentration ([Ca2+]i) increases and production of nitric oxide (NO) have been investigated mostly with indirect methods and remain unclear. Here we demonstrate, by direct real-time measurements of [NO] with a porphyrinic microsensor, that Ca2+ entry, but not an increase in [Ca2+]i, is required for triggering of NO production in human endothelial cells. Histamine, ranging from 0.1 to 100 microM, increased both NO production and [Ca2+]i when given in a single dose. However, histamine caused increased NO release but induced progressively smaller [Ca2+]i changes when cumulatively added. In the absence of a transmembrane Ca2+ gradient, no significant NO release was detectable, despite the marked Ca2+ peak induced by histamine. Inhibition of Ca2+ entry by SK&F 96365 abolished histamine-elicited NO production but only reduced the transient [Ca2+]i rise. The suppression of the sustained [Ca2+]i response under these two conditions suggests that NO release was closely associated with Ca2+ entry from the extracellular space. In addition, membrane depolarization, achieved by increasing the extracellular K+ concentration from 5 to 130 mM, reduced both the amplitude of histamine-induced sustained [Ca2+]i elevation and NO production. These results lead us to propose that the availability of numerous Ca2+ ions around the internal side of the plasma membrane would promote the association between nitric oxide synthase and calmodulin, thereby activating the enzyme.
Full Text
The Full Text of this article is available as a PDF (266.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. G. Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10909–10913. doi: 10.1073/pnas.90.23.10909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Astarie C., David-Dufilho M., Millanvoye-Van Brussel E., Freyss-Béguin M., Devynck M. A. Cytosolic pH in cultured cardiac myocytes and fibroblasts from newborn spontaneously hypertensive rats. Am J Hypertens. 1992 May;5(5 Pt 1):281–287. doi: 10.1093/ajh/5.5.281. [DOI] [PubMed] [Google Scholar]
- Bedioui F., Trevin S., Devynck J., Lantoine F., Brunet A., Devynck M. A. Elaboration and use of nickel planar macrocyclic complex-based sensors for the direct electrochemical measurement of nitric oxide in biological media. Biosens Bioelectron. 1997;12(3):205–212. doi: 10.1016/s0956-5663(97)85338-9. [DOI] [PubMed] [Google Scholar]
- Blatter L. A., Taha Z., Mesaros S., Shacklock P. S., Wier W. G., Malinski T. Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ Res. 1995 May;76(5):922–924. doi: 10.1161/01.res.76.5.922. [DOI] [PubMed] [Google Scholar]
- Bogle R. G., Coade S. B., Moncada S., Pearson J. D., Mann G. E. Bradykinin and ATP stimulate L-arginine uptake and nitric oxide release in vascular endothelial cells. Biochem Biophys Res Commun. 1991 Oct 31;180(2):926–932. doi: 10.1016/s0006-291x(05)81154-4. [DOI] [PubMed] [Google Scholar]
- Buckley B. J., Mirza Z., Whorton A. R. Regulation of Ca(2+)-dependent nitric oxide synthase in bovine aortic endothelial cells. Am J Physiol. 1995 Sep;269(3 Pt 1):C757–C765. doi: 10.1152/ajpcell.1995.269.3.C757. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Förstermann U., Pollock J. S., Schmidt H. H., Heller M., Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1788–1792. doi: 10.1073/pnas.88.5.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Cardeña G., Oh P., Liu J., Schnitzer J. E., Sessa W. C. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6448–6453. doi: 10.1073/pnas.93.13.6448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gosink E. C., Forsberg E. J. Effects of ATP and bradykinin on endothelial cell Ca2+ homeostasis and formation of cGMP and prostacyclin. Am J Physiol. 1993 Dec;265(6 Pt 1):C1620–C1629. doi: 10.1152/ajpcell.1993.265.6.C1620. [DOI] [PubMed] [Google Scholar]
- Graier W. F., Groschner K., Schmidt K., Kukovetz W. R. SK&F 96365 inhibits histamine-induced formation of endothelium-derived relaxing factor in human endothelial cells. Biochem Biophys Res Commun. 1992 Aug 14;186(3):1539–1545. doi: 10.1016/s0006-291x(05)81582-7. [DOI] [PubMed] [Google Scholar]
- Groschner K., Graier W. F., Kukovetz W. R. Activation of a small-conductance Ca(2+)-dependent K+ channel contributes to bradykinin-induced stimulation of nitric oxide synthesis in pig aortic endothelial cells. Biochim Biophys Acta. 1992 Oct 27;1137(2):162–170. doi: 10.1016/0167-4889(92)90198-k. [DOI] [PubMed] [Google Scholar]
- Groschner K., Graier W. F., Kukovetz W. R. Histamine induces K+, Ca2+, and Cl- currents in human vascular endothelial cells. Role of ionic currents in stimulation of nitric oxide biosynthesis. Circ Res. 1994 Aug;75(2):304–314. doi: 10.1161/01.res.75.2.304. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hallam T. J., Jacob R., Merritt J. E. Influx of bivalent cations can be independent of receptor stimulation in human endothelial cells. Biochem J. 1989 Apr 1;259(1):125–129. doi: 10.1042/bj2590125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iouzalen L., Devynck M. A., David-Dufilho M. Isradipine affects histamine-induced cytosolic Ca2+ movements in human endothelial cells. Eur J Pharmacol. 1995 Apr 28;289(2):189–195. doi: 10.1016/0922-4106(95)90094-2. [DOI] [PubMed] [Google Scholar]
- Iouzalen L., Lantoine F., Pernollet M. G., Millanvoye-Van Brussel E., Devynck M. A., David-Dufilho M. SK&F 96365 inhibits intracellular Ca2+ pumps and raises cytosolic Ca2+ concentration without production of nitric oxide and von Willebrand factor. Cell Calcium. 1996 Dec;20(6):501–508. doi: 10.1016/s0143-4160(96)90092-5. [DOI] [PubMed] [Google Scholar]
- Kishi F., Nakaya Y., Takahashi A., Miyoshi H., Nomura M., Saito K. Intracellular and extracellular Ca2+ regulate histamine-induced release of nitric oxide in vascular endothelial cells as shown with sensitive and selective nitric oxide electrodes. Pharmacol Res. 1996 Feb;33(2):123–126. doi: 10.1006/phrs.1996.0018. [DOI] [PubMed] [Google Scholar]
- Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korenaga R., Ando J., Ohtsuka A., Sakuma I., Yang W., Toyo-oka T., Kamiya A. Close correlation between cytoplasmic Ca++ levels and release of an endothelium-derived relaxing factor from cultured endothelial cells. Cell Struct Funct. 1993 Apr;18(2):95–104. doi: 10.1247/csf.18.95. [DOI] [PubMed] [Google Scholar]
- Li S., Okamoto T., Chun M., Sargiacomo M., Casanova J. E., Hansen S. H., Nishimoto I., Lisanti M. P. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem. 1995 Jun 30;270(26):15693–15701. doi: 10.1074/jbc.270.26.15693. [DOI] [PubMed] [Google Scholar]
- Lückhoff A., Busse R. Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflugers Arch. 1990 May;416(3):305–311. doi: 10.1007/BF00392067. [DOI] [PubMed] [Google Scholar]
- Lückhoff A., Pohl U., Mülsch A., Busse R. Differential role of extra- and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol. 1988 Sep;95(1):189–196. doi: 10.1111/j.1476-5381.1988.tb16564.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsubara M., Titani K., Taniguchi H. Interaction of calmodulin-binding domain peptides of nitric oxide synthase with membrane phospholipids: regulation by protein phosphorylation and Ca(2+)-calmodulin. Biochemistry. 1996 Nov 19;35(46):14651–14658. doi: 10.1021/bi9613988. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Robinson L. J., Busconi L., Michel T. Agonist-modulated palmitoylation of endothelial nitric oxide synthase. J Biol Chem. 1995 Jan 20;270(3):995–998. doi: 10.1074/jbc.270.3.995. [DOI] [PubMed] [Google Scholar]
- Schilling W. P., Elliott S. J. Ca2+ signaling mechanisms of vascular endothelial cells and their role in oxidant-induced endothelial cell dysfunction. Am J Physiol. 1992 Jun;262(6 Pt 2):H1617–H1630. doi: 10.1152/ajpheart.1992.262.6.H1617. [DOI] [PubMed] [Google Scholar]
- Shaul P. W., Smart E. J., Robinson L. J., German Z., Yuhanna I. S., Ying Y., Anderson R. G., Michel T. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem. 1996 Mar 15;271(11):6518–6522. doi: 10.1074/jbc.271.11.6518. [DOI] [PubMed] [Google Scholar]
- Tsukahara H., Gordienko D. V., Goligorsky M. S. Continuous monitoring of nitric oxide release from human umbilical vein endothelial cells. Biochem Biophys Res Commun. 1993 Jun 15;193(2):722–729. doi: 10.1006/bbrc.1993.1685. [DOI] [PubMed] [Google Scholar]
- Venema R. C., Sayegh H. S., Arnal J. F., Harrison D. G. Role of the enzyme calmodulin-binding domain in membrane association and phospholipid inhibition of endothelial nitric oxide synthase. J Biol Chem. 1995 Jun 16;270(24):14705–14711. doi: 10.1074/jbc.270.24.14705. [DOI] [PubMed] [Google Scholar]
- Wang Y., Shin W. S., Kawaguchi H., Inukai M., Kato M., Sakamoto A., Uehara Y., Miyamoto M., Shimamoto N., Korenaga R. Contribution of sustained Ca2+ elevation for nitric oxide production in endothelial cells and subsequent modulation of Ca2+ transient in vascular smooth muscle cells in coculture. J Biol Chem. 1996 Mar 8;271(10):5647–5655. doi: 10.1074/jbc.271.10.5647. [DOI] [PubMed] [Google Scholar]
- Weintraub W. H., Negulescu P. A., Machen T. E. Calcium signaling in endothelia: cellular heterogeneity and receptor internalization. Am J Physiol. 1992 Nov;263(5 Pt 1):C1029–C1039. doi: 10.1152/ajpcell.1992.263.5.C1029. [DOI] [PubMed] [Google Scholar]
- Ziche M., Zawieja D., Hester R. K., Granger H. Calcium entry, mobilization, and extrusion in postcapillary venular endothelium exposed to bradykinin. Am J Physiol. 1993 Aug;265(2 Pt 2):H569–H580. doi: 10.1152/ajpheart.1993.265.2.H569. [DOI] [PubMed] [Google Scholar]
- Ziegelstein R. C., Spurgeon H. A., Pili R., Passaniti A., Cheng L., Corda S., Lakatta E. G., Capogrossi M. C. A functional ryanodine-sensitive intracellular Ca2+ store is present in vascular endothelial cells. Circ Res. 1994 Jan;74(1):151–156. doi: 10.1161/01.res.74.1.151. [DOI] [PubMed] [Google Scholar]