Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):733–736. doi: 10.1042/bj3300733

Effect of cross-linkers on the structure and function of pig-renal sodium-glucose cotransporters after papain treatment.

J Giudicelli 1, M F Bertrand 1, S Bilski 1, T T Tran 1, J C Poiree 1
PMCID: PMC1219198  PMID: 9480883

Abstract

Kidney brush-border membranes contain two sodium-dependent glucose transporters, one with low and one with high affinity for phlorizin, the specific inhibitor of these transporters. Using Scatchard analysis of phlorizin binding and Western blotting with specific antibodies against these transporters, we demonstrate in this study that although both transporters were proteolysed by papain treatment, only the high-affinity phlorizin-binding sites were decreased. Papain treatment followed by cross-linking with homobifunctional disuccinimidyl tartarate restored only the structure of the low-affinity phlorizin-binding protein (approx. molecular mass 70 kDa) without modifying the phlorizin-binding sites. When disuccinimidyl tartarate was replaced with dithiobis(succinimidyl acetate), another homobifunctional cross-linker with a higher spacer arm, the low- and high-affinity sites were both restored, with reappearance of two phlorizin-binding proteins with approx. molecular masses of 70 and 120 kDa. We conclude that high-affinity phlorizin-binding sites depend on the presence of the heterodimeric 120 kDa protein.

Full Text

The Full Text of this article is available as a PDF (228.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blank M. E., Bode F., Baumann K., Diedrich D. F. Computer analysis reveals changes in renal Na+-glucose cotransporter in diabetic rats. Am J Physiol. 1989 Aug;257(2 Pt 1):C385–C396. doi: 10.1152/ajpcell.1989.257.2.C385. [DOI] [PubMed] [Google Scholar]
  2. Brot-Laroche E., Serrano M. A., Delhomme B., Alvarado F. Temperature sensitivity and substrate specificity of two distinct Na+-activated D-glucose transport systems in guinea pig jejunal brush border membrane vesicles. J Biol Chem. 1986 May 15;261(14):6168–6176. [PubMed] [Google Scholar]
  3. Gerardi-Laffin C., Delque-Bayer P., Sudaka P., Poiree J. C. Oligomeric structure of the sodium-dependent phlorizin binding protein from kidney brush-border membranes. Biochim Biophys Acta. 1993 Sep 5;1151(1):99–104. doi: 10.1016/0005-2736(93)90076-c. [DOI] [PubMed] [Google Scholar]
  4. Glossmann H., Neville D. M., Jr Phlorizin receptors in isolated kidney brush border membranes. J Biol Chem. 1972 Dec 10;247(23):7779–7789. [PubMed] [Google Scholar]
  5. Gérardi-Laffin C., Vittori C., Sudaka P., Poirée J. C. Immunological recognition of sodium/D-glucose cotransporter from renal brush border membranes by polyclonal antibodies. Biochim Biophys Acta. 1991 Mar 18;1063(1):21–26. doi: 10.1016/0005-2736(91)90348-c. [DOI] [PubMed] [Google Scholar]
  6. Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
  7. Kessler M., Acuto O., Storelli C., Murer H., Müller M., Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta. 1978 Jan 4;506(1):136–154. doi: 10.1016/0005-2736(78)90440-6. [DOI] [PubMed] [Google Scholar]
  8. Klip A., Grinstein S., Semenza G. Partial purification of the sugar carrier of intestinal brush border membranes. Enrichment of the phlorizin-binding component by selective extractions. J Membr Biol. 1979 Dec 12;51(1):47–73. doi: 10.1007/BF01869343. [DOI] [PubMed] [Google Scholar]
  9. Koepsell H., Fritzsch G., Korn K., Madrala A. Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis of phlorizin binding and D-glucose transport measurements. J Membr Biol. 1990 Mar;114(2):113–132. doi: 10.1007/BF01869093. [DOI] [PubMed] [Google Scholar]
  10. Mackenzie B., Panayotova-Heiermann M., Loo D. D., Lever J. E., Wright E. M. SAAT1 is a low affinity Na+/glucose cotransporter and not an amino acid transporter. A reinterpretation. J Biol Chem. 1994 Sep 9;269(36):22488–22491. [PubMed] [Google Scholar]
  11. Ohta T., Isselbacher K. J., Rhoads D. B. Regulation of glucose transporters in LLC-PK1 cells: effects of D-glucose and monosaccharides. Mol Cell Biol. 1990 Dec;10(12):6491–6499. doi: 10.1128/mcb.10.12.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Silverman M. Structure and function of hexose transporters. Annu Rev Biochem. 1991;60:757–794. doi: 10.1146/annurev.bi.60.070191.003545. [DOI] [PubMed] [Google Scholar]
  13. Thomas L., Kinne R. Studies on the arrangement of a glucose sensitive phlorizin binding site in the microvilli of isolated rat kidney brushborder. FEBS Lett. 1972 Sep 15;25(2):242–244. doi: 10.1016/0014-5793(72)80494-0. [DOI] [PubMed] [Google Scholar]
  14. Turner R. J., Kempner E. S. Radiation inactivation studies of the renal brush-border membrane phlorizin-binding protein. J Biol Chem. 1982 Sep 25;257(18):10794–10797. [PubMed] [Google Scholar]
  15. Turner R. J., Moran A. Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J Membr Biol. 1982;70(1):37–45. doi: 10.1007/BF01871587. [DOI] [PubMed] [Google Scholar]
  16. Turner R. J., Moran A. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am J Physiol. 1982 Apr;242(4):F406–F414. doi: 10.1152/ajprenal.1982.242.4.F406. [DOI] [PubMed] [Google Scholar]
  17. Vannier C., Louvard D., Maroux S., Desnuelle P. Structural and topological homology between porcine intestinal and renal brush border aminopeptidase. Biochim Biophys Acta. 1976 Nov 11;455(1):185–199. doi: 10.1016/0005-2736(76)90163-2. [DOI] [PubMed] [Google Scholar]
  18. Veyhl M., Spangenberg J., Püschel B., Poppe R., Dekel C., Fritzsch G., Haase W., Koepsell H. Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-D-glucose cotransporter. J Biol Chem. 1993 Nov 25;268(33):25041–25053. [PubMed] [Google Scholar]
  19. Weber W. M., Schwarz W., Passow H. Endogenous D-glucose transport in oocytes of Xenopus laevis. J Membr Biol. 1989 Oct;111(1):93–102. doi: 10.1007/BF01869212. [DOI] [PubMed] [Google Scholar]
  20. You G., Lee W. S., Barros E. J., Kanai Y., Huo T. L., Khawaja S., Wells R. G., Nigam S. K., Hediger M. A. Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. J Biol Chem. 1995 Dec 8;270(49):29365–29371. doi: 10.1074/jbc.270.49.29365. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES