Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):745–752. doi: 10.1042/bj3300745

Cloning and functional expression of a cDNA from rat jejunal epithelium encoding a protein (4F2hc) with system y+L amino acid transport activity.

S Y Yao 1, W R Muzyka 1, J F Elliott 1, C I Cheeseman 1, J D Young 1
PMCID: PMC1219200  PMID: 9480885

Abstract

Two different protein families, designated CAT (cationic amino acid transporter) and BAT (broad-specificity amino acid transporter) mediate the plasma membrane transport of cationic amino acids in animal cells. CAT transporters have 12-14 transmembrane domains and are selective for cationic amino acids. BAT proteins, in contrast, have one to four transmembrane domains and induce the transport of both cationic and zwitterionic amino acids when expressed in Xenopus oocytes. Mutations in the human BAT gene cause type I cystinuria, a disease affecting the ability of intestinal and renal brush border membranes to transport cationic amino acids and cystine. We have used functional expression cloning in oocytes to isolate a BAT-related cDNA from rat jejunal epithelium. The cDNA encodes the rat 4F2 heavy chain (4F2hc) cell-surface antigen, a 527-residue (60 kDa) protein that is 26% identical in amino acid sequence with rat renal BAT (also known as NBAT/D2). Expression of rat jejunal 4F2hc in oocytes induced the lysine-inhibitable Na+-dependent influx of leucine and the leucine-inhibitable Na+-independent influx of lysine. Lysine efflux was stimulated by extracellular (Na+ plus leucine). These characteristics identify the expressed amino acid transport activity as system y+L, a transporter that has been implicated in basal membrane transport of cationic amino acids in intestine, kidney and placenta.

Full Text

The Full Text of this article is available as a PDF (468.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A., Peter G. J., Taylor P. M., Harper A. A., Rennie M. J. Sodium-independent currents of opposite polarity evoked by neutral and cationic amino acids in neutral and basic amino acid transporter cRNA-injected oocytes. J Biol Chem. 1995 Apr 14;270(15):8482–8486. doi: 10.1074/jbc.270.15.8482. [DOI] [PubMed] [Google Scholar]
  2. Ahmed A., Yao P. C., Brant A. M., Peter G. J., Harper A. A. Electrogenic L-histidine transport in neutral and basic amino acid transporter (NBAT)-expressing Xenopus laevis oocytes. Evidence for two functionally distinct transport mechanisms induced by NBAT expression. J Biol Chem. 1997 Jan 3;272(1):125–130. [PubMed] [Google Scholar]
  3. Angelo S., Irarrázabal C., Devés R. The binding specificity of amino acid transport system y+L in human erythrocytes is altered by monovalent cations. J Membr Biol. 1996 Sep;153(1):37–44. doi: 10.1007/s002329900107. [DOI] [PubMed] [Google Scholar]
  4. Bertran J., Magagnin S., Werner A., Markovich D., Biber J., Testar X., Zorzano A., Kühn L. C., Palacin M., Murer H. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5606–5610. doi: 10.1073/pnas.89.12.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bertran J., Werner A., Moore M. L., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5601–5605. doi: 10.1073/pnas.89.12.5601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bröer S., Bröer A., Hamprecht B. Expression of Na+-independent isoleucine transport activity from rat brain in Xenopus laevis oocytes. Biochim Biophys Acta. 1994 Jun 1;1192(1):95–100. doi: 10.1016/0005-2736(94)90147-3. [DOI] [PubMed] [Google Scholar]
  7. Bröer S., Bröer A., Hamprecht B. The 4F2hc surface antigen is necessary for expression of system L-like neutral amino acid-transport activity in C6-BU-1 rat glioma cells: evidence from expression studies in Xenopus laevis oocytes. Biochem J. 1995 Dec 15;312(Pt 3):863–870. doi: 10.1042/bj3120863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Busch A. E., Herzer T., Waldegger S., Schmidt F., Palacin M., Biber J., Markovich D., Murer H., Lang F. Opposite directed currents induced by the transport of dibasic and neutral amino acids in Xenopus oocytes expressing the protein rBAT. J Biol Chem. 1994 Oct 14;269(41):25581–25586. [PubMed] [Google Scholar]
  9. Calonge M. J., Gasparini P., Chillarón J., Chillón M., Gallucci M., Rousaud F., Zelante L., Testar X., Dallapiccola B., Di Silverio F. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994 Apr;6(4):420–425. doi: 10.1038/ng0494-420. [DOI] [PubMed] [Google Scholar]
  10. Cheeseman C. I. Characteristics of lysine transport across the serosal pole of the anuran small intestine. J Physiol. 1983 May;338:87–97. doi: 10.1113/jphysiol.1983.sp014662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cheeseman C. Role of intestinal basolateral membrane in absorption of nutrients. Am J Physiol. 1992 Sep;263(3 Pt 2):R482–R488. doi: 10.1152/ajpregu.1992.263.3.R482. [DOI] [PubMed] [Google Scholar]
  12. Chillarón J., Estévez R., Mora C., Wagner C. A., Suessbrich H., Lang F., Gelpí J. L., Testar X., Busch A. E., Zorzano A. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem. 1996 Jul 26;271(30):17761–17770. doi: 10.1074/jbc.271.30.17761. [DOI] [PubMed] [Google Scholar]
  13. Coady M. J., Jalal F., Chen X., Lemay G., Berteloot A., Lapointe J. Y. Electrogenic amino acid exchange via the rBAT transporter. FEBS Lett. 1994 Dec 19;356(2-3):174–178. doi: 10.1016/0014-5793(94)01262-8. [DOI] [PubMed] [Google Scholar]
  14. Devés R., Chavez P., Boyd C. A. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. J Physiol. 1992 Aug;454:491–501. doi: 10.1113/jphysiol.1992.sp019275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eleno N., Devés R., Boyd C. A. Membrane potential dependence of the kinetics of cationic amino acid transport systems in human placenta. J Physiol. 1994 Sep 1;479(Pt 2):291–300. doi: 10.1113/jphysiol.1994.sp020296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fei Y. J., Prasad P. D., Leibach F. H., Ganapathy V. The amino acid transport system y+L induced in Xenopus laevis oocytes by human choriocarcinoma cell (JAR) mRNA is functionally related to the heavy chain of the 4F2 cell surface antigen. Biochemistry. 1995 Jul 11;34(27):8744–8751. doi: 10.1021/bi00027a025. [DOI] [PubMed] [Google Scholar]
  17. Furesz T. C., Moe A. J., Smith C. H. Lysine uptake by human placental microvillous membrane: comparison of system y+ with basal membrane. Am J Physiol. 1995 Mar;268(3 Pt 1):C755–C761. doi: 10.1152/ajpcell.1995.268.3.C755. [DOI] [PubMed] [Google Scholar]
  18. Furriols M., Chillarón J., Mora C., Castelló A., Bertran J., Camps M., Testar X., Vilaró S., Zorzano A., Palacín M. rBAT, related to L-cysteine transport, is localized to the microvilli of proximal straight tubules, and its expression is regulated in kidney by development. J Biol Chem. 1993 Dec 25;268(36):27060–27068. [PubMed] [Google Scholar]
  19. Gasparini P., Calonge M. J., Bisceglia L., Purroy J., Dianzani I., Notarangelo A., Rousaud F., Gallucci M., Testar X., Ponzone A. Molecular genetics of cystinuria: identification of four new mutations and seven polymorphisms, and evidence for genetic heterogeneity. Am J Hum Genet. 1995 Oct;57(4):781–788. [PMC free article] [PubMed] [Google Scholar]
  20. Hediger M. A., Kanai Y., Lee W. S., Wells R. G. Identification of a new family of proteins involved in amino acid transport. Soc Gen Physiol Ser. 1993;48:301–314. [PubMed] [Google Scholar]
  21. Hemler M. E., Strominger J. L. Characterization of antigen recognized by the monoclonal antibody (4F2): different molecular forms on human T and B lymphoblastoid cell lines. J Immunol. 1982 Aug;129(2):623–628. [PubMed] [Google Scholar]
  22. Huang Q. Q., Yao S. Y., Ritzel M. W., Paterson A. R., Cass C. E., Young J. D. Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. J Biol Chem. 1994 Jul 8;269(27):17757–17760. [PubMed] [Google Scholar]
  23. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  24. Lumadue J. A., Glick A. B., Ruddle F. H. Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9204–9208. doi: 10.1073/pnas.84.24.9204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Malandro M. S., Beveridge M. J., Kilberg M. S., Novak D. A. Ontogeny of cationic amino acid transport systems in rat placenta. Am J Physiol. 1994 Sep;267(3 Pt 1):C804–C811. doi: 10.1152/ajpcell.1994.267.3.C804. [DOI] [PubMed] [Google Scholar]
  26. Michalak M., Quackenbush E. J., Letarte M. Inhibition of Na+/Ca2+ exchanger activity in cardiac and skeletal muscle sarcolemmal vesicles by monoclonal antibody 44D7. J Biol Chem. 1986 Jan 5;261(1):92–95. [PubMed] [Google Scholar]
  27. Miyamoto K., Katai K., Tatsumi S., Sone K., Segawa H., Yamamoto H., Taketani Y., Takada K., Morita K., Kanayama H. Mutations of the basic amino acid transporter gene associated with cystinuria. Biochem J. 1995 Sep 15;310(Pt 3):951–955. doi: 10.1042/bj3100951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mora C., Chillarón J., Calonge M. J., Forgo J., Testar X., Nunes V., Murer H., Zorzano A., Palacín M. The rBAT gene is responsible for L-cystine uptake via the b0,(+)-like amino acid transport system in a "renal proximal tubular" cell line (OK cells). J Biol Chem. 1996 May 3;271(18):10569–10576. doi: 10.1074/jbc.271.18.10569. [DOI] [PubMed] [Google Scholar]
  29. Munck B. G., Schultz S. G. Interactions between leucine and lysine transport in rabbit ileum. Biochim Biophys Acta. 1969 Jun 3;183(1):182–193. doi: 10.1016/0005-2736(69)90142-4. [DOI] [PubMed] [Google Scholar]
  30. Munck B. G., Schultz S. G. Lysine transport across isolated rabbit ileum. J Gen Physiol. 1969 Feb;53(2):157–182. doi: 10.1085/jgp.53.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Munck L. K., Munck B. G. Transport of glycine and lysine on the chloride-dependent beta-alanine (B0,+) carrier in rabbit small intestine. Biochim Biophys Acta. 1995 Apr 12;1235(1):93–99. doi: 10.1016/0005-2736(94)00309-d. [DOI] [PubMed] [Google Scholar]
  32. Novak D. A., Matthews J. C., Beveridge M. J., Yao S. Y., Young J., Kilberg M. S. Demonstration of system y+L activity on the basal plasma membrane surface of rat placenta and developmentally regulated expression of 4F2HC mRNA. Placenta. 1997 Nov;18(8):643–648. doi: 10.1016/s0143-4004(97)90005-9. [DOI] [PubMed] [Google Scholar]
  33. Ohgimoto S., Tabata N., Suga S., Nishio M., Ohta H., Tsurudome M., Komada H., Kawano M., Watanabe N., Ito Y. Molecular characterization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant cell formation of monocytes and HIV gp160-mediated cell fusion. FRP-1 and 4F2/CD98 are identical molecules. J Immunol. 1995 Oct 1;155(7):3585–3592. [PubMed] [Google Scholar]
  34. Palacín M. A new family of proteins (rBAT and 4F2hc) involved in cationic and zwitterionic amino acid transport: a tale of two proteins in search of a transport function. J Exp Biol. 1994 Nov;196:123–137. doi: 10.1242/jeb.196.1.123. [DOI] [PubMed] [Google Scholar]
  35. Parmacek M. S., Karpinski B. A., Gottesdiener K. M., Thompson C. B., Leiden J. M. Structure, expression and regulation of the murine 4F2 heavy chain. Nucleic Acids Res. 1989 Mar 11;17(5):1915–1931. doi: 10.1093/nar/17.5.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Peter G. J., Davidson I. G., Ahmed A., McIlroy L., Forrester A. R., Taylor P. M. Multiple components of arginine and phenylalanine transport induced in neutral and basic amino acid transporter-cRNA-injected Xenopus oocytes. Biochem J. 1996 Sep 15;318(Pt 3):915–922. doi: 10.1042/bj3180915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pickel V. M., Nirenberg M. J., Chan J., Mosckovitz R., Udenfriend S., Tate S. S. Ultrastructural localization of a neutral and basic amino acid transporter in rat kidney and intestine. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7779–7783. doi: 10.1073/pnas.90.16.7779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pras E., Arber N., Aksentijevich I., Katz G., Schapiro J. M., Prosen L., Gruberg L., Harel D., Liberman U., Weissenbach J. Localization of a gene causing cystinuria to chromosome 2p. Nat Genet. 1994 Apr;6(4):415–419. doi: 10.1038/ng0494-415. [DOI] [PubMed] [Google Scholar]
  39. Pras E., Raben N., Golomb E., Arber N., Aksentijevich I., Schapiro J. M., Harel D., Katz G., Liberman U., Pras M. Mutations in the SLC3A1 transporter gene in cystinuria. Am J Hum Genet. 1995 Jun;56(6):1297–1303. [PMC free article] [PubMed] [Google Scholar]
  40. Puppi M., Henning S. J. Cloning of the rat ecotropic retroviral receptor and studies of its expression in intestinal tissues. Proc Soc Exp Biol Med. 1995 May;209(1):38–45. doi: 10.3181/00379727-209-43875. [DOI] [PubMed] [Google Scholar]
  41. Purroy J., Bisceglia L., Calonge M. J., Zelante L., Testar X., Zorzano A., Estivill X., Palacín M., Nunes V., Gasparini P. Genomic structure and organization of the human rBAT gene (SLC3A1). Genomics. 1996 Oct 15;37(2):249–252. doi: 10.1006/geno.1996.0552. [DOI] [PubMed] [Google Scholar]
  42. Quackenbush E. J., Gougos A., Baumal R., Letarte M. Differential localization within human kidney of five membrane proteins expressed on acute lymphoblastic leukemia cells. J Immunol. 1986 Jan;136(1):118–124. [PubMed] [Google Scholar]
  43. Quackenbush E., Clabby M., Gottesdiener K. M., Barbosa J., Jones N. H., Strominger J. L., Speck S., Leiden J. M. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6526–6530. doi: 10.1073/pnas.84.18.6526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. ROBINSON J. W., FELBER J. P. A SURVEY OF THE EFFECT OF OTHER AMINO-ACIDS ON THE ABSORPTION OF L-ARGININE AND L-LYSINE BY THE RAT INTESTINE. Gastroenterologia. 1964;101:330–338. doi: 10.1159/000202330. [DOI] [PubMed] [Google Scholar]
  45. Satoh O., Kudo Y., Shikata H., Yamada K., Kawasaki T. Characterization of amino-acid transport systems in guinea-pig intestinal brush-border membrane. Biochim Biophys Acta. 1989 Oct 16;985(2):120–126. doi: 10.1016/0005-2736(89)90355-6. [DOI] [PubMed] [Google Scholar]
  46. Simell O., Perheentupa J. Renal handling of diamino acids in lysinuric protein intolerance. J Clin Invest. 1974 Jul;54(1):9–17. doi: 10.1172/JCI107753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stevens B. R., Kaunitz J. D., Wright E. M. Intestinal transport of amino acids and sugars: advances using membrane vesicles. Annu Rev Physiol. 1984;46:417–433. doi: 10.1146/annurev.ph.46.030184.002221. [DOI] [PubMed] [Google Scholar]
  48. Stevens B. R., Ross H. J., Wright E. M. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J Membr Biol. 1982;66(3):213–225. doi: 10.1007/BF01868496. [DOI] [PubMed] [Google Scholar]
  49. Tate S. S., Yan N., Udenfriend S. Expression cloning of a Na(+)-independent neutral amino acid transporter from rat kidney. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):1–5. doi: 10.1073/pnas.89.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Torras-Llort M., Ferrer R., Soriano-García J. F., Moretó M. L-lysine transport in chicken jejunal brush border membrane vesicles. J Membr Biol. 1996 Aug;152(3):183–193. doi: 10.1007/s002329900096. [DOI] [PubMed] [Google Scholar]
  51. Van Winkle L. J., Campione A. L., Farrington B. H. Development of system B0,+ and a broad-scope Na(+)-dependent transporter of zwitterionic amino acids in preimplantation mouse conceptuses. Biochim Biophys Acta. 1990 Jun 27;1025(2):225–233. doi: 10.1016/0005-2736(90)90101-s. [DOI] [PubMed] [Google Scholar]
  52. Van Winkle L. J., Campione A. L., Gorman J. M. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site. Biochim Biophys Acta. 1990 Jun 27;1025(2):215–224. doi: 10.1016/0005-2736(90)90100-3. [DOI] [PubMed] [Google Scholar]
  53. Van Winkle L. J., Campione A. L., Gorman J. M. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem. 1988 Mar 5;263(7):3150–3163. [PubMed] [Google Scholar]
  54. Wang C. D., Buck M. A., Fraser C. M. Site-directed mutagenesis of alpha 2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists. Mol Pharmacol. 1991 Aug;40(2):168–179. [PubMed] [Google Scholar]
  55. Wang Y., Tate S. S. Oligomeric structure of a renal cystine transporter: implications in cystinuria. FEBS Lett. 1995 Jul 17;368(2):389–392. doi: 10.1016/0014-5793(95)00685-3. [DOI] [PubMed] [Google Scholar]
  56. Wells R. G., Hediger M. A. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5596–5600. doi: 10.1073/pnas.89.12.5596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wells R. G., Lee W. S., Kanai Y., Leiden J. M., Hediger M. A. The 4F2 antigen heavy chain induces uptake of neutral and dibasic amino acids in Xenopus oocytes. J Biol Chem. 1992 Aug 5;267(22):15285–15288. [PubMed] [Google Scholar]
  58. White M. F. The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochim Biophys Acta. 1985 Dec 9;822(3-4):355–374. doi: 10.1016/0304-4157(85)90015-2. [DOI] [PubMed] [Google Scholar]
  59. Wolfram S., Giering H., Scharrer E. Na+-gradient dependence of basic amino acid transport into rat intestinal brush border membrane vesicles. Comp Biochem Physiol A Comp Physiol. 1984;78(3):475–480. doi: 10.1016/0300-9629(84)90581-4. [DOI] [PubMed] [Google Scholar]
  60. Yagita H., Masuko T., Hashimoto Y. Inhibition of tumor cell growth in vitro by murine monoclonal antibodies that recognize a proliferation-associated cell surface antigen system in rats and humans. Cancer Res. 1986 Mar;46(3):1478–1484. [PubMed] [Google Scholar]
  61. Yao S. Y., Muzyka W. R., Elliott J. F., Cheeseman C. I., Young J. D. Poly(A)+ RNA from the mucosa of rat jejunum induces novel Na(+)-dependent and Na(+)-independent leucine transport activities in in oocytes of Xenopus laevis. Mol Membr Biol. 1994 Apr-Jun;11(2):109–118. doi: 10.3109/09687689409162228. [DOI] [PubMed] [Google Scholar]
  62. de Sanctis L., Bruno M., Bonetti G., Cosseddu D., Bisceglia L., Ponzone A., Dianzani I. Phenotype characterization and prevalence of rBAT M467T mutation in Italian cystinuric patients. J Inherit Metab Dis. 1996;19(2):243–245. doi: 10.1007/BF01799440. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES